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Abstract

There has been a great deal of interest in the problems of modelling cables and ropes. A recent review by Cardou and

Jolicoeur [Appl. Mech. Rev. 50 (1997) 1] considers the modelling of a cable which consists of a central core surrounded

by one or several helically wound wire layers. One approach has been to consider the deformations of an individual

helical wire and to synthesise the model of a cable by using contact conditions between the various wires. Other authors

have adopted a continuum approach regarding each layer as a transversely isotropic material whose principal direction

is along a helix surrounding the central axis of the cable. In each layer the helix angle is constant so that, when referred

to cylindrical polar co-ordinates, the cylinder has a constant stiffness matrix in each layer. The intention in this paper is

to use the continuum approach and describe the analytical solutions that govern the simple bending, flexure, or bending

under a uniform load, of an anisotropic elastic cylinder consisting of a single material of this type. The extension of this

work to a composite cylinder consisting of several concentric layers, surrounding a central core, which are either

bonded together or make a frictionless contact, is briefly described.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

There has been a great deal of interest in the problems of modelling cables and ropes. Costello (1997)

describes how a strand is formed by helically winding wire around a central core. A rope or cable may be
produced by helically winding several strands so that they form a cylindrical layer about a central core. A

cable may have a central core and several coaxial helically wound cylindrical layers with different winding

angles and strands in each layer. This produces a very complicated mechanical assembly which can deform

under extension, torsion and bending and in which the contact forces between the wires and between the

strands influence the behaviour of the cable. A number of different hypotheses have been put forward to

model such cables. Some take into account the bending and torsional stiffness of the wires and infer the
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overall behaviour of the cable by synthesis from its constituent wires or strands. This is referred to as the

discrete approach. A second approach, referred to by Cardou and Jolicoeur (1997) as the semi-continuous

approach, replaces each wire layer by an equivalent orthotropic elastic continuum. This is the approach

which will be adopted in this paper.
The recent review by Cardou and Jolicoeur (1997) examines this field and cites 107 papers. Previous

reviews by Costello (1978), Utting and Jones (1984) and Utting (1994) indicate the interest in and the

importance of solutions in this field. The intention in this paper is to adopt a continuum approach and

regard each layer as a transversely isotropic material whose principal direction is along a helix surrounding

the central axis of the cable. In each layer the helix angle is constant so that, when referred to cylindrical

polar co-ordinates, the cylinder has a constant stiffness matrix in each layer. We find exact solutions for the

simple bending, flexure and bending under a uniform load of an anisotropic cylinder (sometimes referred to

as a helical strand) consisting of a single material of this type. The extension of this work to a hollow
cylinder or to a composite cable consisting of several concentric layers surrounding a central core is briefly

described.

It may be shown that the coupled problem of the axial extension and torsion of a composite cylinder of

this type separates analytically from the bending problems considered in this paper. Blouin and Cardou

(1989) have solved this axial extension and torsion problem. However, although we shall concern ourselves

entirely with the bending of such cylinders, it should be remembered that bending is often accompanied by

axial tension and that the overall stress field will be the sum of the two linear elastic stress fields. In par-

ticular, axial extension generates an inter-layer pressure which is known to influence the bending stiffness in
experiments on some composite cables. Jolicoeur and Cardou (1994) have found the analytical solution for

simple bending of coaxial helically reinforced hollow cylinders of this type. The solution is found using a

stress function due to Lekhnitskii (1981). Two cases are considered; either perfect bonding between the

cylindrical layers, or no friction between the layers. A numerical example based on a two-layer cylinder is

given. A very good agreement is found between the results obtained using the theory presented in this paper

and these published results. Jolicoeur and Cardou (1996) have also made a comparison of the results they

have obtained for simple bending for the semi-continuous model with results obtained by the discrete

approach (see, for example, Lanteigne (1985) and the work of other authors, in particular with the long
series of papers by Raoof and his co-workers, see Raoof and Kraincanic (1994)). In general good agreement

is achieved between the semi-continuous model, some discrete models and some experimental results for

extensional, torsional and bending stiffness.

Obviously the end conditions on these cylinders influence their behaviour in bending. The intention in

this paper is to derive analytical results in a Saint-Venant sense for simple bending, flexure and bending

under a uniform load for a cylinder with a traction-free surface. We assume one end of the cylinder is fixed

and known resultant shear forces and bending moments are applied at the other end of the cylinder. The

analytical results will hold at points in the cylinder sufficiently �far removed� from the ends.
Section 2 formulates the problem and gives a general analysis of bending of the cylinder. Section 3

considers the simple bending of the cylinder under an applied moment over its end. Section 4 considers the

flexure of the cylinder by a resultant shear force applied to its end and Section 5 considers its behaviour

under a uniform transverse load in the form of a body force. Section 6 summarises the extension of this

work to composite cylinders and Section 7 briefly considers a one-dimensional model for the bending of the

cylinder. The paper closes with a brief discussion.

2. General analysis of bending of a cylinder

The basic constitutive equations for a transversely isotropic linearly elastic material with a preferred
direction along the unit vector a have been expressed by Spencer (1984) as
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rij ¼ kekkdij þ 2lTeij þ aðaka‘ek‘dij þ aiajekkÞ þ 2ðlL � lTÞðaiakekj þ ajakekiÞ þ baiajaka‘ek‘; ð2:1Þ

where the elastic constants k, a, b may be expressed directly in terms of the extension moduli EL and ET for

uniaxial tension along and orthogonal to the direction a, the Poisson�s ratios mL and mT associated with these

extensions, and lL and lT which are the shear moduli along and orthogonal to the direction a. Only five of

these constants are independent. These relations are given in Appendix A.

We suppose the cylinder is helically reinforced by winding this transversely isotopic material in a helix of
constant radius about the cylinder axis. We assume the helix angle dðrÞ is measured relative to the cylinder

axis and is a function of the radius r. Taking the z-axis along the axis of the cylinder using the unit vectors

er, eh and ez in the radial, circumferential and axial directions we find

a ¼ sin dðrÞeh þ cos dðrÞez: ð2:2Þ

The stress–strain relations (2.1) can then be transformed into the cylindrical polar co-ordinate system

rrr
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rrz

rrh

0
BBBBBB@

1
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¼

c11 c12 c13 c14 0 0

c12 c22 c23 c24 0 0
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0
BBBBBB@
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err
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0
BBBBBB@

1
CCCCCCA
; ð2:3Þ

where the 13 elastic stiffnesses are related to the moduli EL, ET, lL, lT, mL, mT and the helix angle dðrÞ (see
Appendix A). This gives the stress–strain relation at a point on the cylindrical surface r ¼ constant. If the

lay-angle d is constant then (2.3) is the stress–strain relation at all points of the cylinder and the stiffnesses

cij are constant. In the case of a composite cylinder such as a cable or wire rope which is produced by

winding several different layers to form the cylinder, we can suppose the elastic constants and the lay angle

are piecewise functions of r and divide the cylinder into cylindrical shells in each of which the stiffnesses are

constant. This is referred to by Blouin and Cardou (1989) as the semi-continuous model of a stranded wire.
In this section we examine a solid cylinder in which the elastic constants in (2.3) are constant. Composite

cylinders are considered in Section 6.

In cylindrical polar co-ordinates the equations of equilibrium are
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ð2:4Þ

where F is the body force per unit volume and the strain–displacement relations are
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; ð2:5Þ

where the displacement field is u ¼ urer þ uheh þ uzez.
We look for solutions in which the axis (r ¼ 0) of the cylinder is bent in the (x; z) plane into a parabolic,

cubic or fourth-order curve of the form ð1=2ÞCz2 þ ð1=6ÞDz3 þ ð1=24ÞEz4 in which C, D and E are known

constants. We assume the displacement field has the form
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ur ¼ F1rq
�

þ F3zrq�1 þ 1

2
F5z2rq�2 þ 1

2
Cz2 þ 1

6
Dz3 þ 1

24
Ez4
�
cos h þ ðF2rq þ F4zrq�1Þ sin h;
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�
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6
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24
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�

þ H3zrq�1 þ 1

2
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�
sin h þ H2rq

�
þ H4zrq�1 � Crz� 1

2
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6
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�
cos h;

ð2:6Þ

in which the exponent q is a constant and the 15 constants F1; . . . ;H5 are to be determined from the
equilibrium equations and the boundary conditions. It is convenient to express these constants in the

column vector form

Z ¼ ðF1;G1;H1; F2;G2;H2; . . . ; F5;G5;H5ÞT: ð2:7Þ

If the strains (2.5) are calculated from the displacement field (2.6), and the stress field formed from (2.3),

then the stresses may be substituted into the equilibrium equations (2.4) to form the equivalent of Navier�s
displacement equations of equilibrium.

These equilibrium equations must hold for all values of h, z and r. It may be shown that they reduce to
the following system of 15 equations for the 15 unknowns in Z

MðqÞZ ¼ R; ð2:8Þ

where the right-hand side vector has the following form

R ¼ Crð2�qÞR1 þ W0rð2�qÞR2 þ Drð3�qÞR3 þ Erð4�qÞR4; ð2:9Þ

where

R1 ¼ ð2c13 � c23;�c23;�c34; 0; . . . ; 0ÞT;
R2 ¼ ð�1; 1; 0; . . . ; 0ÞT;
R3 ¼ ð0; 0; 0; 0; c34; c33; 2c13 � c23;�c23;�c34; 0; . . . ; 0ÞT;
R4 ¼ ð0; . . . ; 0; c34; c33; 2c13 � c23;�c23;�c34ÞT:

ð2:10Þ

In the system of equations (2.8) it should be noted that the simple-bending constant C only enters the

first three equations, the flexure constant D only enters equations 5 to 9 and the fourth-order bending

constant E only enters equations 11 to 15. We have inserted a constant body force F ¼ W0i (parallel to the

h ¼ 0 direction) into the equilibrium equations and this only enters the first and second equations of the

system (2.8).

The 15� 15 matrix MðqÞ on the left-hand side of (2.8) is a constant matrix whose coefficients depend on

the exponent q. It may be partitioned into a set of 3� 3 matrices, as shown in (2.11):

MðqÞ ¼

M11ðqÞ 0 0 M14ðqÞ M15ðqÞ
0 M22ðqÞ M23ðqÞ 0 0

0 0 M33ðqÞ 0 0

0 0 0 M44ðqÞ M45ðqÞ
0 0 0 0 M55ðqÞ

0
BBBB@

1
CCCCA: ð2:11Þ

These submatrices are detailed in Appendix B. The matrices on the leading diagonal are closely related to
each other. Matrices M11ðqÞ and M22ðqÞ have the same characteristic equation corresponding to

detM11ðqÞ ¼ 0, detM22ðqÞ ¼ 0 and the same set of roots which we will refer to as the eigenvalues.
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We can also observe that

M33ðqÞ ¼ M11ðq� 1Þ; M44ðqÞ ¼ M22ðq� 1Þ;
M55ðqÞ ¼ M11ðq� 2Þ; M45ðqÞ ¼ M23ðq� 1Þ:

ð2:12Þ

Hence the eigenvalues of the system are closely related to the eigenvalues of M11ðqÞ. Expansion of the

determinant of the 3� 3 matrix M11ðqÞ yields a cubic in q2 of the form

detM11ðqÞ ¼ q2ðaq4 þ bq2 þ cÞ ¼ 0: ð2:13Þ
The constants a, b and c are cubic terms in the cij. There are six eigenvalues q ¼ qi which we denote by

q ¼ q1 ¼ 0, q ¼ q2, q ¼ q3, q4 ¼ �q2, q5 ¼ �q3 and we will cope separately with the double root at the

origin in due course. The non-negative roots q1, q2, q3 correspond to displacements which are finite or zero

along the axis r ¼ 0 of the cylinder. The negative roots and the second solution corresponding to the double

root at q ¼ 0 give rise to solutions which are singular on r ¼ 0. The numerical examples considered to date
have not given rise to complex roots.

The solution of the system (2.8) consists of four particular solutions corresponding to the terms (2.9) on

the right-hand side of (2.8) together with the eigenvector solutions. The particular solutions are found by

putting q ¼ 2 or 3 or 4 in (2.8) and solving the resulting partitioned system (assuming 2, 3 or 4 are not

eigenvalues).

For simple bending, the particular solution is

CZC ¼ CðZT
C1; 0; . . . ; 0Þ

T
; ð2:14Þ

where ZC1 is the 3� 1 vector given by

ZC1 ¼ M�1
11 ð2ÞR10; R10 ¼ ð2c13 � c23;�c23;�c34ÞT: ð2:15Þ

For a body force, the particular solution is

W0ZW ¼ W0 ZT
W 1; 0; . . . ; 0

	 
T
; ð2:16Þ

where

ZW 1 ¼ M�1
11 ð2ÞR11; R11 ¼ ð�1; 1; 0ÞT: ð2:17Þ

For flexure, the particular solution is

DZD ¼ D 0; 0; 0;ZT
D2;Z

T
D3; 0; . . . ; 0

	 
T
; ð2:18Þ

where

ZD3 ¼ M�1
33 ð3ÞR33; where R33 ¼ R10; ð2:19Þ

ZD2 ¼ M�1
22 ð3Þ½R32 �M23ð3ÞZD3	; ð2:20Þ

R32 ¼ ð0; c34; c33ÞT: ð2:21Þ
Note also that M33ð3Þ ¼ M11ð2Þ so that

ZD3 ¼ ZC1: ð2:22Þ
The fourth-order particular solution is found by putting q ¼ 4 and has the form

EZE ¼ E ZT
E1; 0; 0;Z

T
E4;Z

T
E5

	 
T
; ð2:23Þ

where

ZE5 ¼ M�1
55 ð4ÞR10; ð2:24Þ
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ZE4 ¼ M�1
44 ð4Þ½R32 �M45ð4ÞZE5	; ð2:25Þ

ZE1 ¼ �M�1
11 ð4Þ½M14ð4ÞZE4 þM15ð4ÞZE5	; ð2:26Þ

but, if we observe that M55ð4Þ ¼ M11ð2Þ and M44ð4Þ ¼ M22ð3Þ and M45ð4Þ ¼ M23ð3Þ, we see that

ZE5 ¼ ZC1 and ZE4 ¼ ZD2; ð2:27Þ
so that there are close relations between the particular solutions (2.14), (2.16), (2.18) and (2.23).

The eigenvector solutions satisfy the system of linear equations

M11ðqÞ 0 0 M14ðqÞ M15ðqÞ
0 M22ðqÞ M23ðqÞ 0 0

0 0 M33ðqÞ 0 0

0 0 0 M44ðqÞ M45ðqÞ
0 0 0 0 M55ðqÞ

0
BBBB@

1
CCCCA

Z1

Z2

Z3

Z4

Z5

0
BBBB@

1
CCCCA ¼ 0; ð2:28Þ

which may be partitioned into the 3� 3 and 3� 1 matrices as shown.

Because M11ðqÞ and M22ðqÞ have the same characteristic equation, and the other matrices on the leading

diagonal are related to these matrices by (2.12), we can express all of the eigenvectors in terms of the

eigenvalues q ¼ qi, i ¼ 1; . . . ; 5. In this section we are concerned with solutions which are well behaved as
r ! 0, so we will restrict consideration to the non-negative eigenvalues q1 ¼ 0, q2 and q3 of detM11ðqÞ ¼ 0.

We denote the eigenvector corresponding to the eigenvalue q ¼ ei of MðqÞ by Ei ¼ ðZðiÞT
1 ;Z

ðiÞT
2 ; . . . ;Z

ðiÞT
5 ÞT

for i ¼ 1; . . . ; 15.

Eigenvalue e1 ¼ q1 ¼ 0; M11ð0ÞZð1Þ
1 ¼ 0: ð2:29Þ

Examination of this equation shows

Z
ð1Þ
1 ¼ ð1;�1; 0ÞT: ð2:30Þ

Hence the first eigenvector is

E1 ¼ ðZð1ÞT
1 ; 0; 0; 0; 0ÞT; ð2:31Þ

Eigenvalue e2 ¼ q2; M11ðq2ÞZð2Þ
1 ¼ 0: ð2:32Þ

If we take the first component of Z
ð2Þ
1 as unity so Z

ð2Þ
1 ¼ ð1; v2; v3ÞT then v2 and v3 satisfy the equations

c66q22 � c22 � c66 c56ðq22 þ q2Þ � c24
c56ðq22 � q2Þ � c24 c55q22 � c44

� �
v2
v3

� �
¼ ðc12 þ c66Þq2 þ c22 þ c66

ðc56 þ c14Þq2 þ c24

� �
: ð2:33Þ

This can be written as a 2� 2 system

Nðq2ÞV2ðq2Þ ¼ Sðq2Þ; ð2:34Þ

where V2ðq2Þ ¼ ðv2; v3ÞT and Nðq2Þ and Sðq2Þ are the remaining matrices in (2.23). Hence the eigenvector

corresponding to q ¼ q2 is

E2 ¼ Z
ð2ÞT
1 ; 0; 0; 0; 0

� �T
; ð2:35Þ

where

Z
ð2Þ
1 ¼ 1;VT

2 ðq2Þ
	 
T

; ð2:36Þ

and the column vector V2 satisfies (2.34).
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Eigenvalue e3 ¼ q3; M11ðq3ÞZð3Þ
1 ¼ 0:

Similarly the eigenvector is given by

E3 ¼ ðZð3ÞT
1 ; 0; 0; 0; 0ÞT; ð2:37Þ

where

Z
ð3Þ
1 ¼ ð1;VT

2 ðq3ÞÞ
T
; ð2:38Þ

and V2ðq3Þ satisfies (2.34) with q2 replaced by q3.
The matrix M22ðqÞ is very closely related to the matrix M11ðqÞ and has the same eigenvalues. The eigen-

vectors corresponding to M22ðqÞ satisfy the system M22ðqÞ Z2 ¼ 0 and are easily shown to be

Eigenvalue e4 ¼ q1 ¼ 0; E4 ¼ ð0;Zð4ÞT
2 ; 0; 0; 0ÞT;

Eigenvalue e5 ¼ q2; E5 ¼ ð0;Zð5ÞT
2 ; 0; 0; 0ÞT;

Eigenvalue e6 ¼ q3; E6 ¼ ð0;Zð6ÞT
2 ; 0; 0; 0ÞT;

ð2:39Þ

where the second and third components of Z
ð5Þ
2 and Z

ð6Þ
2 satisfy Eq. (2.34) with the sign of the right-hand

side reversed, so that

Z
ð4Þ
2 ¼ ð1; 1; 0ÞT;Zð5Þ

2 ¼ ð1;�VT
2 ðq2ÞÞ

T
and Z

ð6Þ
2 ¼ ð1;�VT

2 ðq3ÞÞ
T
: ð2:40Þ

The eigenvectors corresponding to the matrix M33ðqÞ satisfy the system

M33ðqÞZ3 ¼ 0; M22ðqÞZ2 ¼ �M23ðqÞZ3: ð2:41Þ

Since M33ðqÞ ¼ M11ðq� 1Þ, the eigenvalues of M33 are q ¼ 1þ q1, 1þ q2 and 1þ q3. Consequently Z3

satisfies the system M11ðqiÞZ3 ¼ 0 and hence the Z3 components of the eigenvectors are identical to those

of M11. Hence when q ¼ 1þ qi the eigenvectors have the components

Z
ð6þiÞ
3 ¼ Z

ðiÞ
1 ; i ¼ 1; 2; 3 and Z

ð6þiÞ
2 ¼ �M�1

22 ð1þ qiÞM23ð1þ qiÞZðiÞ
1 ; i ¼ 1; 2; 3; ð2:42Þ

Eigenvalue e7 ¼ 1þ q1; E7 ¼ ð0;�fM�1
22 ð1þ q1ÞM23ð1þ q1ÞZð1Þ

1 gT;Zð1ÞT
1 ; 0; 0ÞT;

Eigenvalue e8 ¼ 1þ q2; E8 ¼ ð0;�fM�1
22 ð1þ q2ÞM23ð1þ q2ÞZð2Þ

1 gT;Zð2ÞT
1 ; 0; 0ÞT;

Eigenvalue e9 ¼ 1þ q3; E9 ¼ ð0;�fM�1
22 ð1þ q3ÞM23ð1þ q3ÞZð3Þ

1 gT;Zð3ÞT
1 ; 0; 0ÞT:

ð2:43Þ

Matrix manipulation easily shows that Z
ð7Þ
2 ¼ ð0; 0;�1ÞT.

Since the matrix M44ðqÞ is equal to M22ðq� 1Þ it also has the eigenvalues q ¼ 1þ qi. The eigenvectors

satisfy the equations

M44ðqÞZ4 ¼ 0; M11ðqÞZ1 ¼ �M14Z4: ð2:44Þ

Hence component Z4 of the eigenvector, corresponding to the eigenvalue 1þ qi, satisfies the equation

M22ðqiÞZ4 ¼ 0, so that the eigenvector components Z
ðiþ6Þ
4 are identical to Z

ðiÞ
2 defined in (2.40). The corres-

ponding values of Z1 are �M�1
11 ð1þ qiÞM14ð1þ qiÞZðiÞ

2 . Hence

Eigenvalue e10 ¼ 1þ q1; E10 ¼ ð�fM�1
11 ð1þ q1ÞM14ð1þ q1ÞZð4Þ

2 gT; 0; 0;Zð4ÞT
2 ; 0ÞT;

Eigenvalue e11 ¼ 1þ q2; E11 ¼ ð�fM�1
11 ð1þ q2ÞM14ð1þ q2ÞZð5Þ

2 gT; 0; 0;Zð5ÞT
2 ; 0ÞT;

Eigenvalue e12 ¼ 1þ q3; E12 ¼ ð�fM�1
11 ð1þ q3ÞM14ð1þ q3ÞZð6Þ

2 gT; 0; 0;Zð6ÞT
2 ; 0ÞT:

ð2:45Þ

Again, we can show that Z
ð10Þ
1 ¼ ð0; 0;�1ÞT.

Finally, since M55ðqÞ ¼ M11ðq� 2Þ, the eigenvalues of M55 are q ¼ 2þ qi. The components of the

eigenvector satisfy the system
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M55ðqÞZ5 ¼ 0;

M44ðqÞZ4 ¼ �M45ðqÞZ5;

M11ðqÞZ1 ¼ �M14ðqÞZ4 �M15ðqÞZ5;

ð2:46Þ

but at q ¼ 2þ qi, M55ðqÞ ¼ M11ðqiÞ and M44ðqÞ ¼ M22ð1þ qiÞ, M45ðqÞ ¼ M23ð1þ qiÞ, hence the first two

sets of equations are identical to those of (2.41), so that Z
ð12þiÞ
5 ¼ Z

ð6þiÞ
5 ¼ Z

ðiÞ
1 , Z

ð12þiÞ
4 ¼ Z

ð6þiÞ
2 for i ¼ 1, 2, 3

as defined in (2.42). Consequently, for i ¼ 1, 2 and 3,

Z
ð12þiÞ
1 ¼ �M�1

11 ð2þ qiÞ M14ð2
h

þ qiÞZð6þiÞ
2 þM15ð2þ qiÞZðiÞ

1

i
; ð2:47Þ

Eigenvalue e13 ¼ 2þ q1; E13 ¼ ðZð13ÞT
1 ; 0; 0;Z

ð7ÞT
2 ;Z

ð1ÞT
1 ÞT;

Eigenvalue e14 ¼ 2þ q2; E14 ¼ ðZð14ÞT
1 ; 0; 0;Z

ð8ÞT
2 ;Z

ð2ÞT
1 ÞT;

Eigenvalue e15 ¼ 2þ q3; E15 ¼ ðZð15ÞT
1 ; 0; 0;Z

ð9ÞT
2 ;Z

ð3ÞT
1 ÞT;

ð2:48Þ

where Z
ð12þiÞ
1 , Z

ð6þiÞ
2 , Z

ðiÞ
1 are defined by (2.47), (2.42), (2.30), (2.36) and (2.38) respectively.

A second set of eigenvectors, which correspond to solutions which are singular on r ¼ 0, may be found

by replacing q2 by �q2 and q3 by �q3 in the above system. For completeness, additional solutions corres-

ponding to the double root at q ¼ 0 should also be added to the set of eigenvectors. These have been found

(see Crossley, 2002), but do not enter the solutions considered in this paper as they are singular on r ¼ 0. A

solution of the system of equations (2.28), by the process of back substitution, will confirm that we have

obtained all of the eigenvectors of the system.

Each eigenvector corresponds to a solution of the equilibrium equations in which the displacement field

is given by (2.6) with q ¼ ei and ðF1; . . . ;H5ÞT ¼ Ei for i ¼ 1; . . . ; 15.

2.1. The eigenvector solutions

1. The solutions corresponding to the eigenvalue q1 ¼ 0 are the following:

Solution 1 ur ¼ cos h, uh ¼ � sin h, uz ¼ 0, which corresponds to a rigid-body translation along the

x-axis.
Solution 4 ur ¼ sin h, uh ¼ � cos h, uz ¼ 0, which corresponds to a rigid-body translation along the

y-axis.
Solution 7 ur ¼ z cos h, uh ¼ �z sin h, uz ¼ �r cos h, which corresponds to a rigid-body rotation about

the y-axis with ux ¼ z, uy ¼ 0, uz ¼ �x.
Solution 10 ur ¼ z sin h, uh ¼ z cos h, uz ¼ �r sin h, which corresponds to a rigid-body rotation about the

x-axis with ux ¼ 0, uy ¼ z, uz ¼ �y.
Solution 13 ur ¼ ð1

2
z2 þ Z

ð13Þ
1 ð1Þr2Þ cos h, uh ¼ ð�1

2
z2 þ Z

ð13Þ
1 ð2Þr2Þ sin h, uz ¼ �zr cos h þ Z

ð13Þ
1 ð3Þr2 sin h

where Z
ð13Þ
1 has the components Z

ð13Þ
1 ð1Þ;Zð13Þ

1 ð2Þ;Zð13Þ
1 ð3Þ. Only Solution 13 corresponds

to a non-zero stress field. This is part of the simple-bending solution found in the next sec-

tion.

2. Solutions corresponding to the eigenvalue q ¼ q2 are

Solution 2 Since Z
ð2Þ
1 ¼ ð1; v2; v3ÞT and the vector V2ðq2Þ ¼ ðv2; v3ÞT satisfies (2.34), then ur ¼ rq2 cos h,

uh ¼ v2rq2 sin h, uz ¼ v3rq2 sin h. This solution has a non-zero stress field.
Solution 5 ur ¼ rq2 sin h, uh ¼ �v2rq2 cos h, uz ¼ �v3rq2 cos h. This is the same solution as Solution 2 ro-

tated through 90�.
Solution 8 ur ¼ zrq2 cos h þ Z

ð8Þ
2 ð1Þrðq2þ1Þ sin h, uh ¼ v2zrq2 sin h þ Z

ð8Þ
2 ð2Þrðq2þ1Þ cos h,

uz ¼ v3zrq2 sin h þ Z
ð8Þ
2 ð3Þrðq2þ1Þ cos h where Z

ð8Þ
2 has the components Z

ð8Þ
2 ð1Þ;Zð8Þ

2 ð2Þ;Zð8Þ
2 ð3Þ.

The solution has a non-zero stress field.
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Solution 11 Is the same solution as Solution 8 rotated through 90�.
Solution 14

ur ¼ Z
ð14Þ
1 ð1Þr2þq2

�
þ 1

2
z2rq2

�
cos h þ Z

ð14Þ
4 ð1Þzr1þq2 sin h;

uh ¼ Z
ð14Þ
1 ð2Þr2þq2

�
þ v2

1

2
z2rq2

�
sin h þ Z

ð14Þ
4 ð2Þzr1þq2 cos h;

uz ¼ Z
ð14Þ
1 ð3Þr2þq2

�
þ v3

1

2
z2rq2

�
sin h þ Z

ð14Þ
4 ð3Þzr1þq2 cos h:

This solution has a non-zero stress field.

3. A similar set of solutions is produced from the eigenvalue q3.

The complete set of solutions of the type (2.6) may be constructed by taking the sum of the particular

solutions corresponding to (2.14), (2.16), (2.18), (2.23) and adding to this the solution corresponding to

each eigenvector E i multiplied by an arbitrary constant Xi, for i ¼ 1; . . . ; 15. Hence

ur ¼
1

2
Cz2

�
þ 1

6
Dz3 þ 1

24
Ez4
�
cos h þ

X19
1

Xi
1

2
Eið13Þz2rei�2

�
þ Eið7Þzrei�1 þ Eið1Þrei

�
cos h

þ Xi Eið10Þzrei�1
�

þ Eið4Þrei
�
sin h; ð2:49Þ

with similar forms for uh and uz where, for simplicity we have put

X16 ¼ C; E16 ¼ ðZT
C1; 0; 0; 0; 0Þ

T
; where e16 ¼ 2;

X17 ¼ D; E17 ¼ ð0;ZT
D2;Z

T
D3; 0; 0Þ

T
; where e17 ¼ 3;

X18 ¼ E; E18 ¼ ðZT
E1; 0; 0;Z

T
E4;Z

T
E5Þ

T
; where e18 ¼ 4;

X19 ¼ W0; E19 ¼ ðZT
W 1; 0; 0; 0; 0Þ

T
; where e19 ¼ 2:

ð2:50Þ

2.2. Boundary conditions

If we are to impose the condition that the surface r ¼ a of the cylinder is traction free, we need to

compute the stress components rrr, rrh and rrz. Each component contains terms in sin h and cos h with

multipliers which are (at most) quadratic functions in z. Setting these terms equal to zero leads to 15

(linearly dependent) equations of the form

X15
i¼1

XiBðeiÞEi ¼ �CBð2ÞZC � DBð3ÞZD � EBð4ÞZE � W0Bð2ÞZW þ RB; ð2:51Þ

where

RB ¼ ac13ðC; 0; 0; 0; 0; 0;D; 0; 0; 0; 0; 0;E; 0; 0ÞT; ð2:52Þ

and the matrix BðqiÞ has the partitioned form

BðqÞ ¼

aq�1B11ðqÞ 0 0 aq�1B14 0

0 aq�1B22ðqÞ aq�1B23 0 0

0 0 aq�2B33ðqÞ 0 0

0 0 0 aq�2B44ðqÞ aq�2B45

0 0 0 0 aq�3B55ðqÞ

0
BBBB@

1
CCCCA; ð2:53Þ
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and

B11ðqÞ ¼
c11qþ c12 c12 c14

�c66 c66ðq� 1Þ c56q

�c56 c56ðq� 1Þ c55q

0
B@

1
CA;

B22ðqÞ ¼
c11qþ c12 �c12 �c14

c66 c66ðq� 1Þ c56q

c56 c56ðq� 1Þ c55q

0
B@

1
CA;

B33ðqÞ ¼ B11ðq� 1Þ; B44ðqÞ ¼ B22ðq� 1Þ;
B55ðqÞ ¼ B11ðq� 2Þ;

B14 ¼
0 c14 c13
c56 0 0

c55 0 0

0
B@

1
CA;

B23 ¼ B14; B45 ¼ B14:

ð2:54Þ

In addition to imposing traction-free boundary conditions on the surface r ¼ a of the cylinder we also

need to specify certain rigid-body displacements and rotations corresponding to the solutions 1, 4, 7 and 10.

For the time being we shall suppose

X1 ¼ 0; X4 ¼ 0; X7 ¼ 0; X10 ¼ 0; ð2:55Þ

which gives a displacement of zero at the origin and a rotation of zero about the x and y axes at the origin.
Particular solutions of the system of equations (2.51) and (2.55) corresponding to simple bending, flexure

and fourth-order bending are examined in the next sections.

2.3. Resultant forces and moments

The resultant forces and moments acting on the cross-section �z� of the cylinder may be found for each

eigenfunction solution with eigenvalue ei and eigenvector Ei. Using the definitions

X ¼
Z a

0

Z 2p

0

ðrrz cos h � rhz sin hÞrdrdh;

Y ¼
Z a

0

Z 2p

0

ðrrz sin h þ rhz cos hÞrdrdh;

Z ¼
Z a

0

Z 2p

0

rzzrdrdh;

MX ¼
Z a

0

Z 2p

0

rzzr2 sin hdrdh;

MY ¼ �
Z a

0

Z 2p

0

rzzr2 cos hdrdh;

MZ ¼
Z a

0

Z 2p

0

rhzr2 drdh;

ð2:56Þ

we find Z ¼ 0 and MZ ¼ 0, so that these solutions correspond to a zero resultant longitudinal force and a

zero torsional moment on each cross-section. As we remarked earlier, the axial extension and torsion so-
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lution separates from the bending solutions. The eigenfunction solution with eigenvalue ei and eigenvector

Ei generates the following resultant forces and moments:

X ¼ paeiþ1

ei þ 1
ð0;S1ðeiÞ;S3; 0; 0ÞEi þ z

paei

ei
ð0; 0; 0;S1ðei � 1Þ;S3ÞEi;

Y ¼ paeiþ1

ei þ 1
ðS2ðeiÞ; 0; 0;S4; 0ÞEi þ z

paei

ei
ð0; 0; S2ðei � 1Þ; 0; 0ÞE i þ

1

2
z2

paei�1

ðei � 1Þ ð0; 0; 0; 0;S2ðei � 2ÞÞEi;

MX ¼ paeiþ2

ei þ 2
ð0;S5ðeiÞ;S7; 0; 0ÞEi þ z

paeiþ1

ei þ 1
ð0; 0; 0;S5ðei � 1Þ;S7ÞE i;

MY ¼ � paeiþ2

ei þ 2
ðS6ðeiÞ; 0; 0;S7; 0ÞEi � z

paeiþ1

ei þ 1
ð0; 0; S6ðei � 1Þ; 0; 0ÞEi �

1

2
z2

paei

ei
ð0; 0; 0; 0;S6ðei � 2ÞÞEi;

ð2:57Þ
where

S1ðqÞ ¼ ðc56 � ðc14qþ c24Þ; c56ðq� 1Þ þ c24; c55qþ c44Þ;
S2ðqÞ ¼ ðc14qþ c24 � c56; c56ðq� 1Þ þ c24; c55qþ c44Þ;
S3 ¼ ðc55;�c44;�c34Þ;
S4 ¼ ðc55; c44; c34Þ;
S5ðqÞ ¼ ðc13qþ c23;�c23;�c34Þ;
S6ðqÞ ¼ ðc13qþ c23; c23; c34Þ;
S7 ¼ ð0; c34; c33Þ:

ð2:58Þ

Solutions corresponding to the zero eigenvalue, namely 1, 4, 7 and 10, are rigid-body displacements with

zero resultant forces and moments.
The additional resultant force and moment terms due to the simple bending (C), flexure (D) and fourth-

order bending terms (E) in the original displacement field (2.5) are

X ¼ 0; Y ¼ �pc34
a3

3
C
�

þ Dzþ 1

2
Ez2
�
; Z ¼ 0;

MX ¼ 0; MY ¼ pc33
a4

4
C
�

þ Dzþ 1

2
Ez2
�
; MZ ¼ 0:

ð2:59Þ

The particular solutions (2.14), (2.16), (2.18) and (2.23) also contribute to the resultant forces and
moments through the formulae (2.57) by using the extended eigenvector representation (2.50).

The following sections examine the simple bending, flexure and the effect of a uniform transverse load on

a cable.

3. Simple bending of a cylinder

In this section we examine the case of a helically reinforced cylinder or cable (06 z6 z0) which is bent

into a parabolic shape by forces and moments applied to its ends whilst the surface r ¼ a of the cylinder

remains traction free. We suppose the axis of the cylinder is bent into a parabolic shape with curvature C
and the constants D, E and W0 in (2.6) are taken to be zero. Assuming the zero rigid-body displacement

conditions (2.55) hold at the origin (0; 0; 0), the zero traction conditions on the surface of the cylinder
reduce to Eqs. (2.51), in which D ¼ 0, E ¼ 0 and W0 ¼ 0. In this case, since only the first three components

of ZC are non-zero, the term Bð2ÞZC on the right-hand side of (2.51) only has non-zero values in its first
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three components. If we examine the left-hand side of (2.51) this indicates we should be able to solve the

system by selecting those eigenvectors with components 4 to 15 equal to zero.

Only the first three eigenvectors have this form, hence we can reduce the system to

X2aq2�1B11ðq2Þ 1; V T
2 ðq2Þ

	 
T þ X3aq3�1B11ðq3Þ 1; V T
2 ðq3Þ

	 
T ¼ �CaB11ð2ÞZc þ c13aðC; 0; 0ÞT; ð3:1Þ

remembering we have set X1 ¼ 0 and that q2 and q3 are the two positive eigenvalues of M11ðqÞ.
This may be shown to be a linearly dependent set of three equations in two variables. If we observe that

M11ðqÞ ¼ qB11ðqÞ � L11ðqÞ; ð3:2Þ
by using (2.54) and the Appendix B, then

L11ðqÞ ¼
c12qþ c22 þ c66 �c66qþ c22 þ c66 �c56qþ c24
c12qþ c22 þ c66 �c66qþ c22 þ c66 �c56qþ c24

c14qþ c24 c24 c44

0
@

1
A ð3:3Þ

and the first two rows of this matrix are identical. If we substitute for B11ðqÞ in (3.1) and use the fact that the

vectors ð1; V T
2 ðqiÞÞ

T
are eigenvectors of M11ðqiÞ, we see that the left-hand side of (3.1) reduces to

X2aq2�1 1

q2
L11ðq2Þð1; V T

2 ðq2ÞÞ
T þ X3aq3�1 1

q3
L11ðq3Þð1; V T

2 ðq3ÞÞ
T

and the first two rows of this expression are identical.

Similarly, if we put 2B11ð2Þ ¼ M11ð2Þ þ L11ð2Þ and observe that ZC ¼ M�1
11 ð2ÞR10 from (2.15), the right-

hand side of (3.1) reduces to

1
2
Caðc23; c23; c34ÞT � 1

2
CaL11ð2ÞM�1

11 ð2ÞR10 ð3:4Þ

and the first two components are identical.

Hence the multipliers X2 and X3 satisfy the second and third equations of

X2

aq2�1

q2
L11ðq2Þð1; V T

2 ðq2ÞÞ
T þ X3

aq3�1

q3
L11ðq3Þð1; V T

2 ðq3ÞÞ
T

¼ 1

2
Caðc23; c23; c34ÞT � 1

2
CaL11ð2ÞM�1

11 ð2ÞR10; ð3:5Þ

where

R10 ¼ ð2c13 � c23;�c23;�c34ÞT ð3:6Þ

and ð1; V T
2 ðqiÞÞ

T
are the eigenvectors of M11ðqiÞ (i ¼ 2; 3) and satisfy (2.34).

For simple bending, the resultant forces are given by (2.57) as

X ¼ 0; Y ¼ X2

paq2þ1

q2 þ 1
S2ðq2ÞZð2Þ

1 þ X3

paq3þ1

q3 þ 1
S2ðq3ÞZð3Þ

1 þ C
pa3

3
S2ð2ÞZC1

� Cpc34
a3

3
: ð3:7Þ

But S2ðqÞ is equal to the third row of ðqþ 1ÞB11ðqÞ �M11ðqÞ and, when this is substituted into (3.6) and we

use (3.1), the value of Y reduces to �ð1=3ÞCpa3½M ð3Þ
11 ð2ÞZC þ c34	 which is easily shown to be zero. Here

M
ð3Þ
11 is the third row of M11. Hence the simple bending deformation is maintained by the application of

zero resultant forces X 
 0, Y 
 0 to the end-face of the cylinder and the constant moment (from (2.57))

given by the following:

MX ¼ 0; MY ¼ �X2

paq2þ2

q2 þ 2
S6ðq2ÞZð2Þ

1 � X3

paq3þ2

q3 þ 2
S6ðq3ÞZð3Þ

1 � C
pa4

4
S6ð2ÞZC1

þ Cp
a4

4
c33: ð3:8Þ
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Hence application of a bending moment to the end-face of this anisotropic cylinder causes it to bend into a

parabolic curve in the plane orthogonal to the bending moment.

In the special case of a helically reinforced cable, Jolicoeur and Cardou (1994) have given two sets of

strain compliances. When the strain compliances of their material 1 (which corresponds to a 15� winding
angle) are inverted to produce stiffnesses they yield the symmetric matrix

10�9C ¼

9:922 1:148 4:354 �0:925 0 0

. . . 9:199 7:315 �0:899 0 0

. . . . . . 48:32 �10:394 0 0

. . . . . . . . . 5:240 0 0

0 0 0 0 2:134 0:4999
0 0 0 0 . . . 3:866

0
BBBBBB@

1
CCCCCCA
; ð3:9Þ

measured in N/m2.

The corresponding eigenvalues are

q1 ¼ 0; q2 ¼ 1:50547; q3 ¼ 2:10654: ð3:10Þ

The eigenvectors Z
ð2Þ
1 and Z

ð3Þ
1 and the particular solution ZC are

Z
ð2Þ
1 ¼ ð1; 2:217; 10:826ÞT; Z

ð3Þ
1 ¼ ð1; 12:369;�6:464ÞT; ZC ¼ ð0:8198; 6:712;�1:1499ÞT:

The scaling factors aq2�1X2 and aq3�1X3 which satisfy (3.1) are

aq2�1X2 ¼ �0:2449a; aq3�1X3 ¼ �0:462a ð3:11Þ

and hence the deformation field in the cylinder is

ur ¼ C½0:8198r2 þ 1
2
z2 � 0:2449a2ðr=aÞq2 � 0:4621a2ðr=aÞq3 	 cos h;

uh ¼ C½6:712r2 � 1
2
z2 � 0:5431a2ðr=aÞq2 � 5:716a2ðr=aÞq3 	 sin h;

uz ¼ C½�1:149r2 � 2:652a2ðr=aÞq2 þ 2:987a2ðr=aÞq3 	 sin h � Czr cos h:

ð3:12Þ

The axis of the cylinder has been bent into a parabolic curve with curvature C in the (x; z)-plane. This is
maintained by the constant bending moment

MY ¼ 23:154� 109a4C Nm; ð3:13Þ

where it should be noted that C has the dimension of L�1 and lengths should be measured in metres for

consistency with the elastic constants. This result yields a bending stiffness of 889 Nm2 for a solid cable of

14 mm radius which compares well with Jolicoeur and Cardou�s result of 707 Nm2 for a hollow composite

cable 26 r6 14 mm with the same external radius.

The solution for bending in the (y; z)-plane under the bending moment MX can be obtained by replacing
h by h þ p=2 in the above solutions. Note that this yields a negative value for MX .

4. Flexure of a cylinder

In this section we consider the case of a helically reinforced cylinder which is bent into a cubic shape of

the form ux ¼ ð1=6ÞDz3 in the (x; z)-plane by the action of forces and moments applied to its ends. We

assume the surface of the cylinder is traction-free and that the zero rigid-body displacement conditions

(2.55) hold at the origin. In this case we are looking for a solution of the boundary conditions (2.51) in
which C ¼ 0, E ¼ 0 and W0 ¼ 0. We shall find that this is only possible if, in addition to a resultant shear

force Y and moment MY , a constant moment MX is applied to the end-face of the cylinder, indicating that
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the cylinder also wants to go into a state of simple bending in the (y; z)-plane. Thus the effect of the helical
winding manifests itself in this out-of-plane bending under flexure. The combined solution of flexure in the

(x; z)-plane and simple bending in the (y; z)-plane, the equivalent of the cantilever problem, is then found.

When C ¼ 0, E ¼ 0, and W0 ¼ 0 then the right-hand side of (2.51) reduces to

�DBð3ÞZD þ c13að0; 0;D; 0; 0; 0; 0ÞT;
where ZD is defined by (2.18).

Hence the right-hand side of (2.52) only has non-zero components in rows 4 to 9. Given the form of the

eigenvectors, we might expect the solution to depend only on the eigenvector solutions 4 to 9 and hence the

boundary conditions will reduce toX9
i¼4

XiBðeiÞEi ¼ �DBð3ÞZD þ c13að0; 0;D; 0; 0; 0; 0ÞT: ð4:1Þ

In addition, if we fix the rigid-body displacement X4 and the rotation X7 to be zero at the origin, the system

reduces to the following six equations in four unknowns:

X5aq2�1B22ðq2ÞZð5Þ
2 þ X6aq3�1B22ðq3ÞZð6Þ

2 þ X8 B22ð1
h

þ q2ÞZð8Þ
2 þ B23ð1þ q2ÞZð8Þ

3

i
aq2�1

þ X9 B22ð1
h

þ q3ÞZð9Þ
2 þ B23ð1þ q3ÞZð9Þ

3

i
aq3�1 ¼ �Da2ðB22ð3ÞZD2 þ B23ð3ÞZD3Þ ð4:2Þ

X8aq2�2B33ð1þ q2ÞZð8Þ
3 þ X9aq3�2B33ð1þ q3ÞZ ð9Þ

3 ¼ �aB33ð3ÞZD3 þ c13aDð1; 0; 0ÞT: ð4:3Þ
But we have shown that B33ð1þ qiÞ ¼ B11ðqiÞ and Z

ð8Þ
3 ¼ Z

ð2Þ
1 , Z

ð9Þ
3 ¼ Z

ð3Þ
1 , ZD3 ¼ ZC1, so that the system of

equations (4.3) is identical to (3.1) on replacing X8 by aX2 and X9 by aX3 and C by D. We have shown that

the three equations in (3.1) are linearly dependent and hence we find

X8 ¼ DaX2=C; X9 ¼ DaX3=C; ð4:4Þ

where X2 and X3 are defined by (3.4).

The variables X5 and X6 must then satisfy the three equations in (4.2). The first two terms on the left-

hand side of (4.2) are

X5aq2�1B22ðq2ÞZð5Þ
2 þ X6aq3�1B22ðq3ÞZð6Þ

2 ; ð4:5Þ

but, as in (3.2),

M22ðqÞ ¼ qB22ðqÞ � L22ðqÞ; ð4:6Þ

where

L22ðqÞ ¼
c12qþ c22 þ c66 c66q� c22 � c66 c56q� c24
�c12q� c22 � c66 �c66qþ c22 þ c66 �c56qþ c24

�c14q� c24 c24 c44

0
@

1
A ð4:7Þ

and Z
ð5Þ
2 and Z

ð6Þ
2 are eigenvectors of M22ðq2Þ, M22ðq3Þ. Hence the X5 and X6 terms on the left-hand side of

(4.2) reduce to

X5

aq2�1

q2
L22ðq2ÞZð5Þ

2 þ X6

aq3�1

q3
L22ðq3ÞZ ð6Þ

2 ; ð4:8Þ

in which rows one and two are identical in form but opposite in sign. If these two equations are added

together, then X5 and X6 cancel from the equation and the remaining terms turn out to be identical to the
third equation of (4.3). Hence we need only solve the second and third equations of (4.2) for X5 and X6.
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If we consider the case of a helically reinforced cable and use Jolicoeur and Cardou�s stiffnesses (see

(3.9)), the eigenvectors which occur in the flexure problem have the non-zero components

Z
ð5Þ
1 ¼ ð1;�2:2173;�10:827ÞT; Z

ð6Þ
1 ¼ ð1;�12:369; 6:464ÞT;

Z
ð8Þ
2 ¼ ð�1:293;�22:574; 29:227ÞT; Z

ð8Þ
3 ¼ ð1; 2:2173; 10:827ÞT;

Z
ð9Þ
2 ¼ ð1:462; 9:388;�22:712ÞT; Z

ð9Þ
3 ¼ ð1; 12:369;�6:464ÞT;

ð4:9Þ

and the particular solution has

ZD2 ¼ ð0:372; 2:249;�6:173ÞT; ZD3 ¼ ð0:820; 6:712;�1:150ÞT: ð4:10Þ
The flexure solution gives rise to the following multipliers of the eigenvectors

X5 ¼ 0:0139a3�q2 ; X6 ¼ 0:291a3�q3 ;

X8 ¼ �0:245a2�q2 ; X9 ¼ �0:462a2�q3 ;
ð4:11Þ

and generates a displacement field of the form

ur ¼ D
1

6
z3

�
þ 0:8198zr2 � 0:245a2z

r
a

� �q2
� 0:462a2z

r
a

� �q3�
cos h

þ D 0:3718r3
�

þ 0:0139a3
r
a

� �q2
þ 0:291a3

r
a

� �q3
þ 0:316a3

r
a

� �1þq2
� 0:6760a3

r
a

� �1þq3
�
sin h;

ð4:12Þ

with similar expressions for uh and uz.
These deformations correspond to the centre-line of the cable having the shape ux ¼ ð1=6ÞDz3 in the

(x; z)-plane and are maintained by the following resultant forces and moments acting on the cross-section of

the cylinder

X ¼ �23:154� 109Da4; Y ¼ 0;

MX ¼ �45:035� 109Da5; MY ¼ 23:154� 109Dza4;
ð4:13Þ

measured in Newtons and Nm. The constant moment MX has to be applied to prevent the rod bending in

the (y; z)-plane.
This solution may be combined with the simple bending solution (found in Section 3) to find the de-

formation of a cylinder which is built-in (in a Saint-Venant sense) at z ¼ 0 and has a uniform resultant shear

force X0 and zero bending moments applied at the end z ¼ z0 of the cylinder. We achieve this by choosing D
to match the applied shear force X0 using (4.13)1, allowing the cable to undergo simple bending in the (x; z)-
plane under the bending moment MY ¼ X0z0 (applied to the end-face z ¼ z0) which is equal and opposite to

that in (4.13)4 together with a simple bending in the (y; z)-plane under an equal and opposite bending

moment to Mx in (4.13)3, in this case MX ¼ �1:945X0a.
The resultant forces and moments in the cylinder at the cross-section �z� reduce to

X ¼ X0; Y ¼ 0; Z ¼ 0;

MX ¼ 0; MY ¼ X0ðz0 � zÞ; MZ ¼ 0;
ð4:14Þ

and the corresponding deformation of the axis (r ¼ 0) of the cylinder in Cartesian co-ordinates is

ux ¼ 0:007198� 10�9X0z2ð3z0 � zÞ=a4;
uy ¼ 0:0420� 10�9X0z2=a3; uz ¼ 0;

ð4:15Þ

measured in metres, see Fig. 1. This graph gives the non-dimensional deflections 10�6c33aux=X0, displayed as

a continuous line, and 10�6c33auy=X0 for a cylinder of length 100a. Hence, under flexure, the cylinder bends

J.A. Crossley et al. / International Journal of Solids and Structures 40 (2003) 777–806 791



up in the (x; z)-plane and to the right in the (y; z)-plane. This cable has been manufactured with an anti-

clockwise helical winding of 15� relative to the axis of the cylinder. If the winding is made clockwise with an

angle of 15�, the bend in the (y; z)-plane is reversed.
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Fig. 1. Flexure of a cylindrical cantilever of length z0 ¼ 100a by a resultant force X0i applied to its end. The non-dimensional deflections

ð10�6ac33=X0Þux and ð10�6ac33=X0Þuy are plotted as functions of s ¼ z=a.

Fig. 2. Flexure of a cylindrical cantilever of length 100a by a resultant force X0i applied to its end. The cos h components of the non-

dimensional stress field on z ¼ 0.
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The stress field on the cross-section z ¼ 0 for a cantilever of length 100a is shown on Figs. 2 and 3. Each

stress component has the form of f ðrÞ cos h þ gðrÞ sin h for 06 r6 a. Fig. 2 plots the cos h components of
the stress field, scaled by a3=ðX0z0Þ, as a function of r=a. Fig. 3 plots the sin h components of the stress field

scaled by a3=ðX0z0Þ, as a function of r=a.
The continuous lines denote rrr and rzz. The dotted lines denoting rrh and rrz go to zero at r ¼ a. The

dashed lines denote rhh and rhz. This notation has been used on all figures involving the stress components.

We note that rzz is the largest stress component and that rrr, rhh, rzz, rhz depend largely on cos h, whilst rrz

and rrh depend largely on sin h. The cable is principally bending by flexure in the (x; z)-plane which corres-

ponds to h ¼ 0.

The flexure solution for the (y; z)-plane is easily found on replacing h by h þ p=2.

5. Body force solutions

A particular solution was obtained in Section 2 corresponding to the case when a constant body force of
magnitude W0 per unit volume acts in the x-direction. This produces a fourth-order deflection of the

centreline of the rod. The boundary conditions (2.51) become

X15
i¼1

XiBðeiÞEi þ EBð4ÞZE � RB ¼ �W0Bð2ÞZW ; ð5:1Þ

in which we have taken C and D equal to zero. If we fix the displacement field and the rotations to be zero at

the origin, the problem reduces to satisfying the 15 equations in (5.1). We have 11 of the constants Xi and

the constant E at our disposal.

As in the previous sections, this is a linearly dependent set of equations and a unique solution may be

found which corresponds to fourth-order bending in the (x; z)-plane. This deformation can only be

maintained by the application of the resultant forces Xbf and Ybf , and resultant moments MX bf and MY bf at
the end z ¼ z0 of the rod. In the case of the cable modelled using Jolicoeur and Cardou�s constants (3.9), the
multipliers Xi and E are

Fig. 3. Flexure of a cylindrical cantilever of length 100a by a resultant force X0i applied to its end. The sin h components of the stress

field on z ¼ 0.
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X1 ¼ 0; X2 ¼ �0:094a2�q2 ; X3 ¼ 0:057a2�q3 ; X4 ¼ X5 ¼ X6 ¼ 0; X7 ¼ X8 ¼ X9 ¼ 0;

X10 ¼ 0; X11 ¼ 0:0019a1�q2 ; X12 ¼ 0:0395a1�q3 ; X13 ¼ 0; X14 ¼ �0:0332a�q2 ;

X15 ¼ �0:0627a�q3 ; E ¼ 0:1357=a2; ð5:2Þ

where each term should be multiplied by 10�9W0 to put it into dimensional form and W0 is measured in

N/m3. The resultants necessary to maintain this deformation in the (x; z)-plane have the following values on

z ¼ z0:

Xbf ¼ �pa2z0W0; Ybf ¼ �6:110a3W0;

MX bf ¼ �6:110a3z0W0; MY bf ¼
1

2
pa2z20

�
� 2:738a4

�
W0:

ð5:3Þ

5.1. The cantilever problem

The resultant forces and moments in (5.3) may be removed by combining this solution with bending and

flexural deformations in the (x; z) and (y; z) planes.
The combined solutions are of the form

u ¼ ubf þ C1usb þ C2usb2 þ D1ufl þ D2ufl2; ð5:4Þ

where ubf is the body force field of the type (2.6) found by solving (5.1), usb is the simple bending field and ufl
the flexure field found in the previous sections. The fields usb2 and ufl2 are the corresponding bending and

flexure fields in the (y; z)-plane. In the cantilever problem we must choose the multiplying constants to

ensure the end z ¼ z0 of the cylinder is unloaded and the end z ¼ 0 is built-in in a Saint-Venant sense. The

corresponding constants are

D1 ¼ �Xbf=Xfl; D2 ¼ Ybf=Xfl;

C1 ¼ �ðMY bf þ D1MY fl � D2MX flÞ=bs;
C2 ¼ �ðMX bf þ D1MX fl þ D2MY flÞ=bs;

ð5:5Þ

where Xfl, MX fl, MY fl are the forces and moments which occur in Eq. (4.13) of the flexure problem and bs is
the bending stiffness given in (3.13) of the bending problem.

The resultant forces and moments in the rod become

X ¼ W0pa2ðz0 � zÞ; Y ¼ 0; Z ¼ 0; MX ¼ 0; MY ¼ 1
2
W0pa2ðz� z0Þ2; MZ ¼ 0: ð5:6Þ

Using Jolicoeur and Cardou�s constants (3.9), the displacement field on the axis of the cylinder is

ux ¼ 5:653� 10�12W0a2
z
a

� �2 z
a

� �2�
� 4

zz0
a2

� �
þ 6

z0
a

� �2
� 34:938

�
;

uy ¼ 43:983� 10�12W0a2
z
a

� �2 3z0 � z
a

� �
:

ð5:7Þ

The non-dimensional deflections of a cylindrical cantilever of length z0 ¼ 100a under the body force W0i per
unit volume are shown on Fig. 4. The deflections are scaled by 10�6ac33=ðpa2z0W0Þ and are plotted as

functions of s ¼ z=a.
The cos h components of the non-dimensional stress field on the cross-section z ¼ 0 are given on Fig. 5

and the corresponding sin h components on Fig. 6. Again the stress components have been scaled by
a2=ðpa2z0W0Þ where the denominator is the total �weight� of the cylinder. Note that the largest stress is the

cos h component of rzz on Fig. 5 and the principal bending direction is in the h ¼ 0 plane.
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5.2. The catenary problem

In a similar manner we can examine the transverse deflections of a cable supported at both ends. The full

catenary problem, of course, involves a combination of a finite deflection of the cable, and the extensional

behaviour modelled by Blouin and Cardou (1989). The Saint-Venant type solutions for the linear elastic

Fig. 5. Deflection of a cylindrical cantilever of length z0 ¼ 100a by a body force W0. The cos h components of the non-dimensional

stress field on z ¼ 0 are plotted as a function of R ¼ r=a.
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Fig. 4. Deflection of a cylindrical cantilever of length z0 ¼ 100a by a body force W0. The non-dimensional deflections

ð10�6ac33=ðpa2z0W0ÞÞðux; uyÞ are plotted as functions of s ¼ z=a.
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small transverse deflections under self-weight of the cable are all that will be modelled here. To find the

solution for a cable which is simply supported at both ends we must permit rotations to take place at each

end so that the displacement field u has the representation

u ¼ ubf þ C1usb þ C2usb2 þ D1ufl þ D2ufl2 þ R1u7 þ R2u10; ð5:8Þ

where u7 and u10 are the displacement fields given in Section 2.1 corresponding to the eigenvector solutions
7 and 10, which correspond to rotations at the origin and ubf , usb etc. are the displacement fields defined in

Eq. (5.4). We select these coefficients so that one of the following two sets of boundary conditions is satis-

fied at z ¼ 0 and z ¼ z0

ðaÞ ux ¼ 0; uy ¼ 0; uy;z ¼ 0; MY ¼ 0;

ðbÞ ux ¼ 0; uy ¼ 0; MX ¼ 0; MY ¼ 0:
ð5:9Þ

In case (a) the cable is permitted to rotate at its ends in the (x; z)-plane only, as if it were held in a small

pulley, and in case (b) the ends are simply supported and free to rotate about the x and y axes.

Case (a): The solution subject to the boundary conditions

ux ¼ 0; uy ¼ 0; uy;z ¼ 0; MY ¼ 0; ð5:10Þ

at the ends z ¼ 0, z ¼ z0 yields a displacement which lies entirely in the (x; z)-plane ðuy 
 0Þ and is supported

by the forces and moments

X ¼ p
2
W0a2ðz0 � 2zÞ; Y ¼ �6:110W0a3; MX ¼ 3:055W0a3ðz0 � 2zÞ; MY ¼ � p

2
W0a2zðz0 � zÞ:

ð5:11Þ
Hence the deformation is possible if equal and opposite reaction forces �6:110W0a3 acting in the y-direction
and reaction momentsMX ¼ �3:055W0a3z0 are applied at the supports at z ¼ 0 and z ¼ z0, in addition to the

reactions ð�p=2ÞW0a2z0 acting in the x-direction which support the load.

The scaled displacement field is shown on Fig. 7.
Case (b): The cable is subject to the (simply-supported) boundary conditions

ux ¼ 0; uy ¼ 0; MX ¼ 0; MY ¼ 0;

Fig. 6. Deflection of a cylindrical cantilever of length z0 ¼ 100a by a body force W0. The sin h components of the non-dimensional stress

field on z ¼ 0 are plotted as a function of R ¼ r=a.
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at the ends z ¼ 0 and z ¼ z0. In this case the cable develops an out-of-plane bend with simple bending and

flexure occurring in both the (x; z) and (y; z) planes. The scaled displacement field is shown on Fig. 8. The

load is supported at the ends by resultant forces in the (x; z)-plane. The corresponding cos h and sin h
components of the stress field at z ¼ 0 are shown on Figs. 9 and 10.

6. Composite cylinders

Jolicoeur and Cardou (1994) have considered the simple bending of a composite hollow cable. The inner

cylindrical shell consists of a uniform transversely isotropic material which is helically wound about the

cylinder axis with a helical angle of 15�. The material constants for this material have been used in the

earlier sections of this paper. A second cylindrical shell, consisting of another uniform transversely isotropic
material, is helically wound about the first with a helical angle of )25�, so the system is contrawound. The

cases where the layers are either bonded together or make a frictionless contact are considered. Jolicoeur

and Cardou solve the problem by using a Lekhnitskii stress function approach, and find the bending

stiffness and the stress fields for simple bending of this composite cylinder. The approach described in this

paper has been used by Crossley (2002) to tackle such bending and flexure problems. The eigenvectors

described in Section 2, which correspond to the positive and zero eigenvalues of the matrix MðqÞ in (2.8),

must be supplemented by the eigenvectors corresponding to the negative eigenvalues q4 and q5 from (2.13).

These generate stress and displacement fields which are singular on the axis r ¼ 0 of the cylinder, but
provide sufficient generality to enable the boundary conditions on the inside of a hollow cylinder or the
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Fig. 7. Deflection of a catenary with case (a) boundary conditions. The scaled displacement ð10�6ac33=ðpa2z0W0ÞÞux is plotted as a

function of s ¼ z=a.
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contact conditions between the cylindrical layers to be satisfied. Details are omitted here but may be found
in Crossley (2002).

As a test of the analysis presented in this paper, the problem considered by Jolicoeur and Cardou (1994)

was solved. They apply the bending moment MX ¼ 10 Nm to the composite cable which causes its axis to

Fig. 9. Deflection of a catenary of length z0 ¼ 100a by a body force W0. The cos h components of the non-dimensional stress field on

z ¼ 0 are plotted as a function of R ¼ r=a.
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Fig. 8. Deflection of a catenary with case (b) boundary conditions. The scaled displacement components ð10�6ac33=ðpa2W0z0ÞÞðux; uyÞ
are plotted as functions of s ¼ z=a.
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deform into the shape uy ¼ �ð1=2ÞCz2 in the (y; z)-plane. The internal and external cylindrical surfaces are

assumed to be traction-free and the interface either bonded or making a frictionless contact. The results we

have obtained are displayed on Fig. 11 which corresponds to the results presented by Jolicoeur and Cardou.

The bending stiffness of 707.73245 Nm2 for the bonded case and 498.47619 Nm2 for the frictionless case

agree with the results of Jolicoeur and Cardou to three decimal places, so that the curvature C has the value

10/707.73 m�1 in the bonded case and 10/498.48 m�1 in the frictionless case.

The graphical results of Fig. 11 are almost in exact agreement with those of Jolicoeur and Cardou, except
that we should note that we have used metres and N/m2 as units for consistency with the rest of this paper.

The solid lines correspond to the bonded case and the dotted lines to the frictionless case. Note that the

behaviour is quite different in the two cases. When there is bonding between the layers only the stress

components rhh, rhz and rzz are discontinuous across the interface and the normal stress rrr is compressive

on h ¼ p=2 and tensile on h ¼ �p=2. In the case of frictionless conditions the tangential displacement uh

and, in particular, the axial displacement uz have sharp discontinuities across the interface. The largest

discontinuity is in the axial displacement and it has its maximum value on the neutral (y ¼ 0) plane. The

radial stress rrr drops to zero at the interface (this may be proved analytically) and the stress components
rzz, rhh and rhz have discontinuities across the interface. This raises the possibility that differential slip, both

axially and tangentially, may be more likely to occur under frictionless conditions. Also, from a practical

point of view, since the frictionless and bonded solutions are so different, good predictions of the state of

stress in a composite cable can only be made when the interface conditions are known and modelled ac-

curately.

Further investigations of composite cables under simple bending, flexure and more general loading

conditions have been examined by Crossley (2002).

7. One-dimensional model

The behaviour of this helically wound cable may be modelled using a one-dimensional theory relating

the bending of the axis of the cylinder with the shear forces and bending moments at each cross-section. For

an initially straight cable with the applied transverse loads FX ðzÞi þ FY ðzÞj per unit length, the equilibrium
equations are

Fig. 10. Deflection of a catenary of length z0 ¼ 100a by a body force W0. The sin h components of the non-dimensional stress field on

z ¼ 0 are plotted as a function of R ¼ r=a.
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Fig. 11. Graphs of displacements in the simple bending case for a two layered hollow cable with constants from Jolicoeur and Cardou

(1994), for both bonded and frictionless conditions: (a) graph of f ðrÞ, where ur ¼ f ðrÞ sin h � ð1=2ÞCz2 sin h, (b) graph of gðrÞ, where
uh ¼ gðrÞ cos h � ð1=2ÞCz2 cos h, and (c) graph of hðrÞ, where uz ¼ hðrÞ cos h þ Crz sin h. The remainder are graphs of the stress field

rijðrÞ as stated against radial distance, r, in the simple bending case.
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X 0ðzÞ ¼ �FX ðzÞ; Y 0ðzÞ ¼ �FY ðzÞ;
M 0

X ðzÞ ¼ Y ðzÞ; M 0
Y ðzÞ ¼ �X ðzÞ:

ð7:1Þ

The constitutive relations for a helically wound cylinder of this type relate the curvature to the bending

moments and shear forces and have the form

bsux;zz ¼ MY ðzÞ � aY ðzÞ; ð7:2Þ

bsuy;zz ¼ �MX ðzÞ þ aX ðzÞ; ð7:3Þ

where bs is the bending stiffness of the cable and a is a constant for the cable. In vector form this becomes

bsD;zz ¼ �k� ðM � aSÞ; ð7:4Þ

where D is the transverse displacement of the axis of the cable, M the bending moment and S the shear

force in the cable. This model may be used to give a physical interpretation to some of the constants oc-

curring in the previous sections of the work which were generated directly from some Maple manipulations.

7.1. Simple bending

The solution obtained in Section 3 with a constant value M0
Y for MY ðzÞ and X ¼ 0, Y ¼ 0, MX ¼ 0, yields

ux;zz ¼ M0
Y =bs; uy;zz ¼ 0;

giving a constant curvature in the (x; z)-plane. The bending stiffness for Jolicoeur and Cardou�s constants
(3.9) has the value of bs given in (3.13) as

bs ¼ 23:154a4 � 109 Nm2: ð7:5Þ

7.2. Flexure

The solutions obtained in Section 4 first found the resultant forces and moments necessary to maintain

the displacement field ux ¼ ð1=6ÞDz3 and uy ¼ 0. The resultant forces (4.13) are X ¼ �bsD, Y ¼ 0,
MX ¼ �45:035a5D� 109, MY ¼ Dbsz. If these are substituted into the constitutive relations (7.2) and (7.3),

the curvature relation (7.2) is satisfied exactly and (7.3) reduces to

0 ¼ �MX þ aX :

Hence, using Jolicoeur and Cardou�s constants (3.9), the material constant a has the value

a ¼ 1:945a: ð7:6Þ

The second solution obtained in Section 4 corresponds to the cantilever problem with an end load X0.

The shear force and bending moments are given by (4.14) and the only non-zero terms are X ¼ X0,

MY ¼ X0ðz0 � zÞ. The corresponding curvatures are

bsux;zz ¼ X0ðz0 � zÞ; bsuy;zz ¼ aX0: ð7:7Þ

If these are integrated subject to the built-in boundary conditions

uxð0Þ ¼ 0; ux;zð0Þ ¼ 0; uyð0Þ ¼ 0; uy;zð0Þ ¼ 0; ð7:8Þ

the displacements (4.15) are found and the numerical multipliers 7:198� 10�12 and 4:20� 10�11 can be
identified as ð6bsÞ�1

and a=ð2bsÞ.
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7.3. Body force solutions

The first solution corresponds to the deformation ux ¼ Ez4=24, uy ¼ 0. This was maintained by the re-

sultant force and moment field (5.3), namely

X ¼ �pa2W0z; Y ¼ �6:110a3W0; MX ¼ �6:110a3zW0; MY ¼ 1
2
pa2z2W0 � 2:738a4W0: ð7:9Þ

If the expression for MY is scaled in terms of the overall length z0 of the cable it becomes

MY ¼ 1

2
pa2W0z20

z
z0

� �2
 

� 1:447
a
z0

� �2
!
: ð7:10Þ

The quantity z0=a is the scaled natural length of the cylinder which must be large for this Saint-Venant

theory to be relevant. The second term in (7.10) is small compared with the first term except near to the
built-in end of the cable where we might expect these solutions to be least accurate. So, for the purpose of

constructing a one-dimensional theory, we shall suppose that this term could be adjusted by a quantity

proportional to ða=z0Þ2. We postulate

MY ¼ 1

2
pa2W0z20

z
z0

� �2
 

� k
a
z0

� �2
!
; ð7:11Þ

where k is a constant to replace the last term in (7.9). This is equivalent to supposing that the boundary

conditions which hold on the end face z ¼ 0 of the cable whose centre line satisfies the constitutive relations

(7.2) and (7.3) differ by a term of order ða=z0Þ2 from those which are applied over the end face z ¼ 0 of the
cable in Section 5.

Using (7.2) and (7.3), these relations reduce to

1
2
bsEz2 ¼ 1

2
pa2z2W0 � 1

2
pka4W0 þ a6:110a3W0 ð7:12Þ

and

0 ¼ 6:110a3W0zþ að�pa2W0zÞ; ð7:13Þ

so that, from (7.13), the numerical value of 6.110 is seen to be

6:110 ¼ ap=a: ð7:14Þ

Eq. (7.12) now implies

E ¼ pa2W0=bs; k ¼ 6:110a
2

pa
¼ 7:56; ð7:15Þ

after some manipulation. The value of E found in (5.2) has precisely the value given in (7.15).

The second solution of Section 5 corresponds to the cantilever problem with the force field FX ðzÞ equal to
pa2W0 and the end-face unstressed. The resultant forces and moments are given in (5.5) with the non-zero

terms

X ¼ pa2W0ðz0 � zÞ; MY ¼ 1
2
pa2W0ðz� z0Þ2: ð7:16Þ

The constitutive relations define the curvatures

bsux;zz ¼ 1
2
pa2W0ðz� z0Þ2; bsuy;zz ¼ apa2W0ðz0 � zÞ: ð7:17Þ

On integrating these equations subject to the built-in conditions (7.8) at z ¼ 0 we find
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bsux ¼
1

24

� �
pa2W0z2ðz2 � 4zz0 þ 6z20Þ;

bsuy ¼ ða=6Þpa2W0z2ð3z0 � zÞ:
ð7:18Þ

The numerical coefficients in (5.7) can now be identified and confirmed, but it should be noted that the

final term in (5.7)1 has the order of ða=z0Þ2 compared with the other terms in the expression and can be

neglected except near the built-in end of the cable. Again, this term must be due to the fine structure of the

boundary conditions on the end-face z ¼ 0 of the cylinder which has been induced by our solution in

Section 5.

7.4. Catenary problems

We need to solve the system of equations

X 0ðzÞ ¼ �pa2W0; Y 0ðzÞ ¼ 0;

M 0
X ðzÞ ¼ Y ðzÞ; M 0

Y ðzÞ ¼ �X ðzÞ;
bsux;zz ¼ MY ðzÞ � aY ðzÞ;
bsuy;zz ¼ �MX ðzÞ þ aX ðzÞ;

ð7:19Þ

subject to boundary conditions of the form of (5.9) (a) or (b).

In case (a), with the boundary conditions ux ¼ 0, uy ¼ 0, uy;z ¼ 0, MY ¼ 0 at z ¼ 0 and z ¼ z0, integration
of the system yields

X ðzÞ ¼ �pa2W0ðz� z0=2Þ; Y ðzÞ ¼ �apa2W0;

MX ðzÞ ¼ �apa2W0ðz� z0=2Þ; MY ðzÞ ¼ pa2W0zðz� z0Þ=2;
ð7:20Þ

which agree with Eq. (5.11), and

bsux ¼
pa2W0

24
z4
	

� 2z3z0 þ zz30 þ 12a2ðz2 � zz0Þ


; bsuy ¼ 0; ð7:21Þ

and we note that ux is symmetrical about the midpoint z ¼ z0=2.
Similarly, in case (b) with the boundary conditions ux ¼ 0, uy ¼ 0, MX ¼ 0, MY ¼ 0 at z ¼ 0 and z ¼ z0,

integration of the system yields

X ðzÞ ¼ �pa2W0ðz� z0=2Þ; Y ðzÞ ¼ 0;

MX ðzÞ ¼ 0; MY ðzÞ ¼ pa2W0ðz2 � z0zÞ=2;
ð7:22Þ

with the displacement fields

bsux ¼
pa2W0

24
ðz4 � 2z3z0 þ zz30Þ;

bsuy ¼ �a
pa2W0

12
ð2z3 � 3z0z2 þ z20zÞ;

ð7:23Þ

and we note that ux is symmetrical and uy is antisymmetrical about the midpoint z ¼ z0=2 of the cable.
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8. Discussion

The analysis presented in this paper has found exact solutions, in a Saint-Venant sense, for the bending

of a helically reinforced cylinder when the transverse displacement field is a polynomial of degree four in the
axial co-ordinate z. This work may be generalised in more than one direction.

The extension of the analysis to cables with two or three layers of different helically wound materials has

been carried out by Crossley (2002) and is briefly reported in Section 6. In this work the cases where the

layers are bonded together or make a frictionless contact are both considered. The analysis could also be

extended to more layers but it is subject to an increasing algebraic complexity.

A second generalisation is to suppose the transverse displacement field is a polynomial of degree n in z.
Clearly we can extend the analysis presented here by maintaining the same pattern for the highest-order

coefficients in the field as that which is used in (2.6). These terms give rise to a strain field in which the only
non-zero component is ezz and this has degree n� 2 in z. If the other expressions in (2.6) are also extended

by using homogeneous terms of the form zrq�1; z2rq�2; . . . ; zn�2rqþ2�n, the equilibrium equations may be

formed. These will reduce to a matrix system of the structure of (2.8) with MðqÞ having a partitioned form,

as in (2.11), but with a larger system of linear equations. For example, for a sixth-degree polynomial, the

homogeneous expressions must include all powers of z up to terms of the form z4rq�4 and the system of

equations is of order 27� 27. The form for MðqÞ has 3� 3 matrices along the leading diagonal from

M11ðqÞ toM99ðqÞ, with a sparse array of matrices above the leading diagonal. These matrices will be related

by expressions of the form given in (2.12) and the particular solutions and the eigenvectors can be generated
as in Section 2. The boundary values of rrr, rrh, rrz on the cylindrical surface r ¼ a will also reduce to

polynomials in z multiplying cos h or sin h. Assuming the imposed surface tractions have this form, or

appropriate body-force terms have been inserted into the equilibrium equations, higher-order bending

solutions for the cylinder may be found. A similar approach is possible to find solutions which depend on

cosðnhÞ and sinðnhÞ.
Recently Martin and Berger (2002) have considered the propagation of mechanical waves along ACSR

(aluminium conductor steel reinforced) power lines and given references to previous work on the vibrations

of wire ropes. In general one-dimensional models are used to form the equations of motion. As we have
found no coupling between the bending solutions described in this paper and the extension–torsion solu-

tions found by Blouin and Cardou (1989), we might expect uncoupled wave phenomena to occur. The one-

dimensional constitutive equation (7.4) yields a simple model for the bending of these anisotropic cylinders

at points remote from their points of support. It is easily shown, on replacing Eq. (7.1) by the appropriate

equations of motion, that two helical bending waves can propagate along such anisotropic cylinders. The

wave speeds are x=p1 and x=p2, where p1 and p2 are the positive roots of the equation

p4 ¼ mx2

bs

� �
ð1� apÞ; ð8:1Þ

where x is the frequency, m is the mass per unit length of the cable, bs is the bending stiffness and a the

anisotropic cable constant. Further investigation of dynamic phenomena for helically reinforced cables can

be based on this one-dimensional model or the full three-dimensional system.

Acknowledgements

The authors gratefully acknowledge the award of a CASE studentship to J.A. Crossley from British

Energy Generation Limited and the Engineering and Physical Sciences Research Council. The scientific

support and insight provided by R.I.A. Elrick of British Energy Generation Limited has been much
appreciated.

804 J.A. Crossley et al. / International Journal of Solids and Structures 40 (2003) 777–806



Appendix A. The stress–strain relations

The elastic constants k, a, b, which occur in the constitutive equation (2.1), namely

rij ¼ kekkdij þ 2lTeij þ aðaka‘ek‘dij þ aiajekkÞ þ 2ðlL � lÞðaiakekj þ ajakekiÞ þ baiajaka‘ekl; ðA:1Þ

may be expressed directly in terms of the extension moduli EL and ET for uniaxial tension along and

orthogonal to the direction a, the Poisson�s ratios mL and mT associated with these extensions and lL and lT

which are the shear moduli along and orthogonal to the direction a. Using the notation of Blouin and

Cardou (1989), these reduce to

lT ¼ ET=½2ð1þ mTÞ	;

k ¼ ET

ETmT
EL

�
þ m2L

��
ð1þ mTÞc;

a ¼ ET mLð1
�

þ mT � mLÞ
ETmT
EL

��
ð1þ mTÞc;

b ¼ ETð1� mTÞ=c � 4lL þ 2lT � 2a � k;

ðA:2Þ

where

c ¼ ð1� mTÞET=EL � 2m2L: ðA:3Þ

Note that a uniaxial stress in the T -direction (orthogonal to a) generates a strain with Poisson�s ratio mL in

the L-direction, and a strain with Poisson�s ratio mT in an orthogonal T -direction. In addition, m0L strain in

the T -direction due to a uniaxial stress in the L-direction and that these are connected by the relation

ETm
0
L ¼ ELmL: ðA:4Þ

Note also that there are only five independent elastic constants.

When the constitutive equation is put into cylindrical polar co-ordinates (r; h; z) and the principal di-

rection of transverse isotropy is taken along the helical direction

a ¼ eh sin d þ ez cos d; ðA:5Þ

where d is the lay angle of the helical strands, the elastic stiffness matrix defined in (2.3) has the form

c11 ¼ k þ 2lT; c12 ¼ k þ a sin2 d; c13 ¼ k þ a cos2 d; c14 ¼ a sin d cos d;

c22 ¼ k þ 2lT cos 2d þ ð4lL þ 2a þ b sin2 dÞ sin2 d; c23 ¼ k þ a þ b sin2 d cos2 d;

c24 ¼ ða þ 2lL � 2lT þ b sin2 dÞ sin d cos d;

c33 ¼ k � 2lT cos 2d þ ð4lL þ 2a þ b cos2 dÞ cos2 d;

c34 ¼ ða þ 2lL � 2lT þ b cos2 dÞ sin d cos d; c44 ¼ lL þ b sin2 d cos2 d;

c55 ¼ lT sin
2 d þ lL cos

2 d; c56 ¼ ðlL � lTÞ cos d sin d; c66 ¼ lT cos
2 d þ lL sin

2 d:

ðA:6Þ

Appendix B. The submatrices of MðqÞ

In Eq. (2.11) the 15� 15 matrix MðqÞ is partitioned into a set of 3� 3 submatrices which are detailed
below. The matrices are closely related to each other.
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M11ðqÞ ¼
c11q2 � c22 � c66 ðc12 þ c66Þq� c22 � c66 ðc14 þ c56Þq� c24

�ðc12 þ c66Þq� c22 � c66 c66q2 � c22 � c66 c56ðq2 þ qÞ � c24
�ðc14 þ c56Þq� c24 c56ðq2 � qÞ � c24 c55q2 � c44

0
@

1
A;

M22ðqÞ ¼
c11q2 � c22 � c66 �ðc12 þ c66Þqþ c22 þ c66 �ðc14 þ c56Þqþ c24

ðc12 þ c66Þqþ c22 þ c66 c66q2 � c22 � c66 c56ðq2 þ qÞ � c24
ðc14 þ c56Þqþ c24 c56ðq2 � qÞ � c24 c55q2 � c44

0
@

1
A;

M33ðqÞ ¼ M11ðq� 1Þ; M44ðqÞ ¼ M22ðq� 1Þ; M55ðqÞ ¼ M11ðq� 2Þ;

M14ðqÞ ¼
2c56 ðc14 þ c56Þq� c24 � 2c56 ðc13 þ c55Þq� c23 � c55

ðc14 þ c56Þqþ c24 þ c56 � c14 �2c24 �c44 � c23
ðc13 þ c55Þq� c13 þ c23 �c23 � c44 �2c34

0
@

1
A;

M15ðqÞ ¼
c55 0 0

0 c44 c34
0 c34 c33

0
@

1
A;

M23ðqÞ ¼
�2c56 ðc14 þ c56Þq� c24 � 2c56 ðc13 þ c55Þq� c23 � c55

ðc14 þ c56Þqþ c24 þ c56 � c14 2c24 c23 þ c44
ðc13 þ c55Þq� c13 þ c23 c23 þ c44 2c34

0
@

1
A;

M45ðqÞ ¼ M23ðq� 1Þ:
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