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Abstract

There has been a great deal of interest in the problems of modelling cables and ropes. A recent review by Cardou and
Jolicoeur [Appl. Mech. Rev. 50 (1997) 1] considers the modelling of a cable which consists of a central core surrounded
by one or several helically wound wire layers. One approach has been to consider the deformations of an individual
helical wire and to synthesise the model of a cable by using contact conditions between the various wires. Other authors
have adopted a continuum approach regarding each layer as a transversely isotropic material whose principal direction
is along a helix surrounding the central axis of the cable. In each layer the helix angle is constant so that, when referred
to cylindrical polar co-ordinates, the cylinder has a constant stiffness matrix in each layer. The intention in this paper is
to use the continuum approach and describe the analytical solutions that govern the simple bending, flexure, or bending
under a uniform load, of an anisotropic elastic cylinder consisting of a single material of this type. The extension of this
work to a composite cylinder consisting of several concentric layers, surrounding a central core, which are either
bonded together or make a frictionless contact, is briefly described.
© 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

There has been a great deal of interest in the problems of modelling cables and ropes. Costello (1997)
describes how a strand is formed by helically winding wire around a central core. A rope or cable may be
produced by helically winding several strands so that they form a cylindrical layer about a central core. A
cable may have a central core and several coaxial helically wound cylindrical layers with different winding
angles and strands in each layer. This produces a very complicated mechanical assembly which can deform
under extension, torsion and bending and in which the contact forces between the wires and between the
strands influence the behaviour of the cable. A number of different hypotheses have been put forward to
model such cables. Some take into account the bending and torsional stiffness of the wires and infer the
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overall behaviour of the cable by synthesis from its constituent wires or strands. This is referred to as the
discrete approach. A second approach, referred to by Cardou and Jolicoeur (1997) as the semi-continuous
approach, replaces each wire layer by an equivalent orthotropic elastic continuum. This is the approach
which will be adopted in this paper.

The recent review by Cardou and Jolicoeur (1997) examines this field and cites 107 papers. Previous
reviews by Costello (1978), Utting and Jones (1984) and Utting (1994) indicate the interest in and the
importance of solutions in this field. The intention in this paper is to adopt a continuum approach and
regard each layer as a transversely isotropic material whose principal direction is along a helix surrounding
the central axis of the cable. In each layer the helix angle is constant so that, when referred to cylindrical
polar co-ordinates, the cylinder has a constant stiffness matrix in each layer. We find exact solutions for the
simple bending, flexure and bending under a uniform load of an anisotropic cylinder (sometimes referred to
as a helical strand) consisting of a single material of this type. The extension of this work to a hollow
cylinder or to a composite cable consisting of several concentric layers surrounding a central core is briefly
described.

It may be shown that the coupled problem of the axial extension and torsion of a composite cylinder of
this type separates analytically from the bending problems considered in this paper. Blouin and Cardou
(1989) have solved this axial extension and torsion problem. However, although we shall concern ourselves
entirely with the bending of such cylinders, it should be remembered that bending is often accompanied by
axial tension and that the overall stress field will be the sum of the two linear elastic stress fields. In par-
ticular, axial extension generates an inter-layer pressure which is known to influence the bending stiffness in
experiments on some composite cables. Jolicoeur and Cardou (1994) have found the analytical solution for
simple bending of coaxial helically reinforced hollow cylinders of this type. The solution is found using a
stress function due to Lekhnitskii (1981). Two cases are considered; either perfect bonding between the
cylindrical layers, or no friction between the layers. A numerical example based on a two-layer cylinder is
given. A very good agreement is found between the results obtained using the theory presented in this paper
and these published results. Jolicoeur and Cardou (1996) have also made a comparison of the results they
have obtained for simple bending for the semi-continuous model with results obtained by the discrete
approach (see, for example, Lanteigne (1985) and the work of other authors, in particular with the long
series of papers by Raoof and his co-workers, see Raoof and Kraincanic (1994)). In general good agreement
is achieved between the semi-continuous model, some discrete models and some experimental results for
extensional, torsional and bending stiffness.

Obviously the end conditions on these cylinders influence their behaviour in bending. The intention in
this paper is to derive analytical results in a Saint-Venant sense for simple bending, flexure and bending
under a uniform load for a cylinder with a traction-free surface. We assume one end of the cylinder is fixed
and known resultant shear forces and bending moments are applied at the other end of the cylinder. The
analytical results will hold at points in the cylinder sufficiently ‘far removed’ from the ends.

Section 2 formulates the problem and gives a general analysis of bending of the cylinder. Section 3
considers the simple bending of the cylinder under an applied moment over its end. Section 4 considers the
flexure of the cylinder by a resultant shear force applied to its end and Section 5 considers its behaviour
under a uniform transverse load in the form of a body force. Section 6 summarises the extension of this
work to composite cylinders and Section 7 briefly considers a one-dimensional model for the bending of the
cylinder. The paper closes with a brief discussion.

2. General analysis of bending of a cylinder

The basic constitutive equations for a transversely isotropic linearly elastic material with a preferred
direction along the unit vector a have been expressed by Spencer (1984) as
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0 = rew:0i + 2ure;; + oararewdy; + aiajen) + 2(uy — ur)(aarer; + a;arer) + Paa;arases, (2.1)

where the elastic constants 4, «, f may be expressed directly in terms of the extension moduli £y and Et for
uniaxial tension along and orthogonal to the direction a, the Poisson’s ratios v; and vt associated with these
extensions, and y; and pr which are the shear moduli along and orthogonal to the direction a. Only five of
these constants are independent. These relations are given in Appendix A.

We suppose the cylinder is helically reinforced by winding this transversely isotopic material in a helix of
constant radius about the cylinder axis. We assume the helix angle J(r) is measured relative to the cylinder
axis and is a function of the radius r. Taking the z-axis along the axis of the cylinder using the unit vectors
¢,, ¢y and e in the radial, circumferential and axial directions we find

a = sin é(r)ey + cos 6(r)e.. (2.2)

The stress—strain relations (2.1) can then be transformed into the cylindrical polar co-ordinate system

Gy cn ¢ oc3 ca 0 0 [

TG00 cin ¢» c3 cu 0 0 €00

Oz | _ | €13 €23 (33 Cxn 0 0 € (2 3)
09z Ciu € cu c O 0 2ep. |’ '
(O 0 0 0 0 Css  Csg 26,2

(%] 0 0 0 0 Cs6  Ce6 26,9

where the 13 elastic stiffnesses are related to the moduli £y, Et, y, ur, vi, vt and the helix angle 6(r) (see
Appendix A). This gives the stress—strain relation at a point on the cylindrical surface » = constant. If the
lay-angle 0 is constant then (2.3) is the stress—strain relation at all points of the cylinder and the stiffnesses
c;; are constant. In the case of a composite cylinder such as a cable or wire rope which is produced by
winding several different layers to form the cylinder, we can suppose the elastic constants and the lay angle
are piecewise functions of » and divide the cylinder into cylindrical shells in each of which the stiffnesses are
constant. This is referred to by Blouin and Cardou (1989) as the semi-continuous model of a stranded wire.

In this section we examine a solid cylinder in which the elastic constants in (2.3) are constant. Composite
cylinders are considered in Section 6.

In cylindrical polar co-ordinates the equations of equilibrium are

6O-rr 1 agr() agrz Oy — 000
o r 00 0z r
aO'rg 1 60'99 60'92 20}9

or r 00 Oz r

66,, 1 60'02 aazz Oz _
or V70 Ta Ty TEe=0

where F is the body force per unit volume and the strain—displacement relations are

+F-e. =0,

+ F ey = O’ (24)

o =t e O 10w 10
T T Y Ty T T2\ e -0 )

1 /0u, Ou, 1 /10u, Oup 1
%—x&+m)=m—ﬂ;w+a‘ﬂo’ (25)

where the displacement field is u = u,e, + ugey + u.e..

We look for solutions in which the axis (» = 0) of the cylinder is bent in the (x,z) plane into a parabolic,
cubic or fourth-order curve of the form (1/2)Cz* + (1/6)Dz* + (1/24)Ez* in which C, D and E are known
constants. We assume the displacement field has the form
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1 1 1 1 .
= (Fqu + Bz 4 §F522rq72 + 3 Cc2 + EDZ3 + ﬂEz4> cos 0 + (Fr + Fyzr™") sin 0,

1 1 1 1
Uy = (Glr" + Gyzr ™+ 3 Gsz*ri™? — 5Cz2 - 6D23 - ﬁEz“) sin 0 + (Gar? + Gazr’ ') cos 0, (2.6)

1 . 1 1
u, = (leq + Hyzr ' + §H522rq2> sin 0 + (Hzr‘] + Hyzr ' — Crz — EDrz2 — gErZ3> cos 0,
in which the exponent ¢ is a constant and the 15 constants Fj,...,Hs are to be determined from the
equilibrium equations and the boundary conditions. It is convenient to express these constants in the
column vector form

Z = (R,Gy,H,F,Gy,H,, ..., Fs,Gs,Hs)". (2.7)

If the strains (2.5) are calculated from the displacement field (2.6), and the stress field formed from (2.3),
then the stresses may be substituted into the equilibrium equations (2.4) to form the equivalent of Navier’s
displacement equations of equilibrium.

These equilibrium equations must hold for all values of 0, z and r. It may be shown that they reduce to
the following system of 15 equations for the 15 unknowns in Z

M(q)Z = R, (2.8)
where the right-hand side vector has the following form

R = Cr* R, + Woyr® IRy + Dr 9 R; + Er*9R,, (2.9)
where

T
Rl = (2¢13 —sz,—6237—034707~->0) )

(

=(-1,1,0,...,0)",
T (2.10)

R3 =(0,0,0,0, ¢34, €33,2¢13 — €23, —C23, —Cx4,0,...,0)",

(

T
0,...,0,c3,c33,2¢13 — €23, —C23, —C34) .

In the system of equations (2.8) it should be noted that the simple-bending constant C only enters the
first three equations, the flexure constant D only enters equations 5 to 9 and the fourth-order bending
constant E only enters equations 11 to 15. We have inserted a constant body force F = Wi (parallel to the
0 = 0 direction) into the equilibrium equations and this only enters the first and second equations of the
system (2.8).

The 15 x 15 matrix M(g) on the left-hand side of (2.8) is a constant matrix whose coefficients depend on
the exponent ¢g. It may be partitioned into a set of 3 x 3 matrices, as shown in (2.11):

Mii(q) 0 0 M(q) Mis(q)
0 Mx(q) Max(g) 0 0
M(q) = 0 0 Mg 0 0 . (2.11)
0 0 0 Mulg) Mis(q)
0 0 0 0  Mss(g)

These submatrices are detailed in Appendix B. The matrices on the leading diagonal are closely related to
each other. Matrices M (q) and Max(gq) have the same characteristic equation corresponding to
det M,(q) = 0, det M (g) = 0 and the same set of roots which we will refer to as the eigenvalues.



J.A. Crossley et al. | International Journal of Solids and Structures 40 (2003) 777-806 781

We can also observe that

M3y(q) =Mi(g—1), Mu(q) =Mxn(g-1),
Mss(q) = Mii(qg —2), Maus(q) = Mx(qg —1).

Hence the eigenvalues of the system are closely related to the eigenvalues of M,(g). Expansion of the
determinant of the 3 x 3 matrix M1,(q) yields a cubic in ¢* of the form

detMyi(q) = ¢*(og" + Bg’ +7) = 0. (2.13)
The constants o, f# and y are cubic terms in the ¢;;. There are six eigenvalues ¢ = ¢; which we denote by
g=q1=0,q9=q, 9= q3, g2 = —q2, g5 = —q; and we will cope separately with the double root at the
origin in due course. The non-negative roots ¢, ¢», g3 correspond to displacements which are finite or zero
along the axis » = 0 of the cylinder. The negative roots and the second solution corresponding to the double
root at ¢ = 0 give rise to solutions which are singular on » = 0. The numerical examples considered to date
have not given rise to complex roots.

The solution of the system (2.8) consists of four particular solutions corresponding to the terms (2.9) on
the right-hand side of (2.8) together with the eigenvector solutions. The particular solutions are found by
putting ¢ =2 or 3 or 4 in (2.8) and solving the resulting partitioned system (assuming 2, 3 or 4 are not
eigenvalues).

For simple bending, the particular solution is

(2.12)

CZc =C(ZL,,0,...,0)7, (2.14)
where Z; is the 3 x 1 vector given by
Zoy =M (2R, Rig= (203 — 3,3, —Cua) . (2.15)
For a body force, the particular solution is
WZy = Wo(Z5,,0,...,0)", (2.16)
where
Zyi =M (2R, Ri=(-1,1,0". (2.17)
For flexure, the particular solution is
DZ, = D(0,0,0,2%,, Z},,0,...,0)", (2.18)
where
Zpy = M3 (3)Ry;, where Ry; = Ry, (2.19)
Zy = M) (3)[Ry, — Mx(3)Z 3], (2.20)
Rs; = (0,c34,¢33)". (2.21)
Note also that M;3(3) = M ;(2) so that
Zpy=Zc. (2.22)
The fourth-order particular solution is found by putting ¢ = 4 and has the form
EZy = E(Z},,0,0,Z},. Z%,)", (2.23)
where

Zys = M (4R, (2.24)
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Zpy = M} (4)[Ryy — Mys(4)Z ), (2.25)

Zp =M () [My(8)Zpy + My5(4)Z ), (2.26)
but, if we observe that Mss(4) = M 1(2) and My(4) = M (3) and M4s(4) = M»;(3), we see that

ZE5 = ZCl and ZE4 = ZD2, (227)

so that there are close relations between the particular solutions (2.14), (2.16), (2.18) and (2.23).
The eigenvector solutions satisfy the system of linear equations

M (q) 0 0 M(q) Mis(q) VA
0 Mzz(‘]) M23(f]) 0 0 Z,
0 0 Myulg 0 0 Z | =o, (2.28)
0 0 0 Mulg) Mis(g) || Zs
0 0 0 0 M55(q) ZS

which may be partitioned into the 3 x 3 and 3 x 1 matrices as shown.

Because M ,(g) and Mx(q) have the same characteristic equation, and the other matrices on the leading
diagonal are related to these matrices by (2.12), we can express all of the eigenvectors in terms of the
eigenvalues g = ¢;, i = 1,...,5. In this section we are concerned with solutions which are well behaved as
r — 0, so we will restrict consideration to the non-negative eigenvalues ¢; = 0, ¢, and ¢; of det My,(q) = 0.
We denote the eigenvector corresponding to the eigenvalue ¢ = ¢; of M(q) by E; = (Z Y)T, Z (2i>T, o Z gi)T)T
fori=1,...,15.

Eigenvalue ¢; = ¢, =0, M,;(0)Z\" = 0. (2.29)
Examination of this equation shows

z\V =1,-1,0)". (2.30)
Hence the first eigenvector is

E =(Z"",0,0,0,0) (2.31)

Eigenvalue ¢, = ¢o, M,;(¢2)Z" = 0. (2.32)
If we take the first component of Z 22) as unity so Z §2> = (1,05,v3)" then v, and v; satisfy the equations

Coods — €2 — Co6 Cs6(q3 +q2) —caa \ (02 _ [ (c12+ co6)qa + 22 + ces
<056(6]§ —q2) — Cssq3 — Cas ) (Us ) B ( (56 + c1a)g2 + e ) (233)

This can be written as a 2 x 2 system
N(q2)V2(q2) = S(g2), (2.34)

where V5(¢2) = (v5,03)" and N(g) and S(g,) are the remaining matrices in (2.23). Hence the eigenvector
corresponding to ¢ = ¢, is

T
E>— (zgm,o, 0,0, 0) : (2.35)
where
T
z? = (1.Vi(@) . (2.36)

and the column vector V', satisfies (2.34).



J.A. Crossley et al. | International Journal of Solids and Structures 40 (2003) 777-806 783

Eigenvalue ¢3 = g3, My (q3)Z) = 0.
Similarly the eigenvector is given by
Ey=(27",0,0,0,0), (237)

where

V= (1,73(g), (2.38)

and V,(q;) satisfies (2.34) with g, replaced by gs.
The matrix M (q) is very closely related to the matrix M ;(¢g) and has the same eigenvalues. The eigen-
vectors corresponding to M (q) satisfy the system My (q) Z, = 0 and are easily shown to be

Eigenvalue ¢; = ¢q; =0, E;=(0,Z"7,0,0,0)",
Eigenvalue es = g, Es=(0,2"7,0,0,0)", (2.39)
Eigenvalue ¢s = ¢, Es = (O,Z(ZG)T,O, 0,0)",

where the second and third components of Z;S) and Zg(’) satisfy Eq. (2.34) with the sign of the right-hand
side reversed, so that

zy = (1,1,0", 25 = (1, -V} (q))" and Z§ =(1,-V](g))". (2.40)
The eigenvectors corresponding to the matrix M;;(g) satisfy the system
M33(q)Z3 = 0, Mzz(q)Zz = 7M23(61)Z3. (241)

Since M33(q) = M,,(q — 1), the eigenvalues of M3; are ¢ =1+ ¢, 1 + ¢, and 1 + ¢;. Consequently Z;
satisfies the system M,(g;)Z; = 0 and hence the Z3 components of the eigenvectors are identical to those
of M. Hence when g = 1 + ¢; the eigenvectors have the components

Z0 =70 i=1,2,3 and ZY = —M) (1 + g)My(1 +¢)Z\, i=1,2,3, (2.42)

Eigenvalue ¢; = 1 +¢q1, E; = (0,—{M,, (1 +q1)Mx(1 +q)Z"y", 2T 0,0)",
Eigenvalue ez = 1 +¢5, Eg = (0,—{M,, (1 +q2)Mx(1 4—q2)Z(2> T
(M, )

Y. Z77,0,0 (2.43)
Eigenvalue ¢ = 1 +¢;, Eo=(0,— }T Z(3)T70 0

(14 g)Mx(1+¢3) 2 ,0)".

Matrix manipulation easily shows that Zg) = (0,0,—1)".
Since the matrix My(q) is equal to My (g — 1) it also has the eigenvalues ¢ = 1 + ¢;. The eigenvectors
satisfy the equations

Mu(q)Zs=0,  M(9)Z, = —-MuZ,. (2.44)

Hence component Z, of the eigenvector, correspondlng to the elgenvalue 1 + ¢;, satisfies the equation
My (q:)Z4 = 0, so that the elgenvector components Z ) are identical to Z defined in (2.40). The corres-
ponding values of Z; are —M, (1 +g)M4(1 + q,)Z Hence

Eigenvalue el = 1 + q1, EIO = ( {M;f(l + Q1)M14(1 +q1)Zg4>}T,0, 0, Zg‘)T,O)T7
Eigenvalue e = 1 + q2, E] = ( {M;ll(l =+ 92)M14(1 —+ qz)Zf)}T,O, 07 ZES)T,O)T7 (245)
Eigenvalue ¢;; = | + ¢, = (—{M;] (1 4+ g3 )M 4(1 + ¢3)Z9}7,0,0, 297 0)".

Again, we can show that Zﬁlo) = (0,0, -

Finally, since Mss(q) = M 1(q — 2), the eigenvalues of Mss are ¢ =2+ ¢,. The components of the
eigenvector satisfy the system
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Mss(q)Zs =0,
Mu(9)Zs = —Mus(q)Zs, (2.46)

but at ¢ =2+ ¢;, Mss(q) = My1(q;) and My(q) = Mp(l +q;), M ( ) = M (1 + ¢;), hence the first two

sets of equations are identical to those of (2.41), so that Z\*") = Z (5 V=70 Zz = 20 fori=1,2,3
as defined in (2.42). Consequently, for i =1, 2 and 3,
Z = M 2+ 0) [Mu 2+ a) 287 + M2+ )2V, (247)

Eigenvalue ¢;; =2+q;, E;;= (270,02 Zl T
Eigenvalue ey =2+ ¢q,, Ei;z = (Zi14 0.0, Z Z T)T, (2.48)
Eigenvalue e;s =2+ ¢35, E;s=(Z""7,0,0,z07 P

where Z{"**, 2\ 7z are defined by (2.47), (2.42), (2.30), (2.36) and (2.38) respectively.

A second set of eigenvectors, which correspond to solutions which are singular on » = 0, may be found
by replacing ¢, by —¢; and g3 by —¢; in the above system. For completeness, additional solutions corres-
ponding to the double root at ¢ = 0 should also be added to the set of eigenvectors. These have been found
(see Crossley, 2002), but do not enter the solutions considered in this paper as they are singular on » = 0. A
solution of the system of equations (2.28), by the process of back substitution, will confirm that we have
obtained all of the eigenvectors of the system.

Each eigenvector corresponds to a solution of the equilibrium equations in which the displacement field
is given by (2.6) with ¢ = ¢; and (F,...,Hs)' = E; fori=1,...,15.

2.1. The eigenvector solutions

1. The solutions corresponding to the eigenvalue ¢; = 0 are the following:

Solution 1 u, = cos0, ug = —sin 0, u, = 0, which corresponds to a rigid-body translation along the
X-axis.

Solution 4 u, =sinf, uy = —cos 0, u, = 0, which corresponds to a rigid-body translation along the
y-axis.

Solution 7 u, =zcos 0, uy = —zsin 0, u. = —rcos 0, which corresponds to a rigid-body rotation about
the y-axis with u, =z, u, =0, u, = —x.

Solution 10 u, = zsin 0, uy = zcos 0, u. = —rsin 0, which corresponds to a rigid-body rotation about the
x-axis with ux =0, u} zZ, U, = —).

Solution 13 u, = (12 +Z V(1)) cos 0, up = (—122 + 2V (2)r?)sin 0, w. = —zrcos 0+ ZV(3)rsin 0
where Z1 has the components ZEB)(I),Z§13)(2),Z§13)(3). Only Solution 13 corresponds
to a non-zero stress field. This is part of the simple-bending solution found in the next sec-
tion.

2. Solutions corresponding to the eigenvalue ¢ = ¢, are

Solution 2 Since Zﬁz) = (1, vy, U3)T and the vector V,(q,) = (v2, v3)T satisfies (2.34), then u, = r®2 cos 0,

ug = vpr? sin 0, u, = v3r? sin 0. This solution has a non-zero stress field.

Solution 5 u, = r2sin 0, uy = —v,r?? cos 0, u. = —v3r® cos 0. This is the same solution as Solution 2 ro-
tated through 90°.
Solution 8 u, = z2cosf + ZY(1)ret)sing, Jo = 0yzr% sin 0 + A (@2+1) cos 0,

(2)r
u. = v3zr42 sin 0 + Z¥ (3)r%2+V) cos  where Z\¥ has the components Z¥ (1), Z(282(2), Zég)(3).
The solution has a non-zero stress field.
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Solution 11 Is the same solution as Solution 8 rotated through 90°.
Solution 14

1

Uy = (ng)(2)r2+q2 + vy zzzr‘”) sin 0 + Z{" (2)zr' 2 cos 0,
1 .

u, = (Z(IM)(3)r2+‘12 + 03 222r72> sin 0 + Z{" (3)zr' "% cos 0.

This solution has a non-zero stress field.
3. A similar set of solutions is produced from the eigenvalue ¢;.

The complete set of solutions of the type (2.6) may be constructed by taking the sum of the particular
solutions corresponding to (2.14), (2.16), (2.18), (2.23) and adding to this the solution corresponding to

each eigenvector E; multiplied by an arbitrary constant X;, for i = 1,...,15. Hence
u, ( C* + 6D +32 Ez ) cos 0 + ZX { 3)22 472 4 Ef(T)zr ' + E;(1)r% | cos 0
+ X [E,-(lO)zr"”" + E;(4)r] sin 0, (2.49)

with similar forms for uy and u, where, for simplicity we have put

Xi=C, E;z=(Z5,,0,000)" where ejs = 2,

Xip=D, Epn=(0,2},,Z}00)", where ¢7 = 3, (2.50)
Xig=E, E;g= (ZEHO 0 ZEAUZES) , Where ey =4, |
Xio =W, Ew=(Z},,0,0,0,0)", where ejg = 2.

2.2. Boundary conditions

If we are to impose the condition that the surface » = a of the cylinder is traction free, we need to
compute the stress components a,,., 6,9 and ¢,... Each component contains terms in sin § and cos 0 with
multipliers which are (at most) quadratic functions in z. Setting these terms equal to zero leads to 15
(linearly dependent) equations of the form

ZX,-B(ei)Et = —CB(2)Zc —DB(3)Zp — EB(4)Zr — WyB(2)Zy + Ry, (2:51)
where
R; = ac13(C,0,0,0,0,0,D,0,0,0,0,0,E,0,0)", (2.52)
and the matrix B(g;) has the partitioned form
Clq_lB“(q) 0 0 aq_lBM 0
0 a"’lez(q) (lq71323 0 0
B(g) = 0 0 a’Bs;(q) 0 0 , (2.53)
0 0 0 aq’zB44(q) aq’zB45
0 0 0 0 aq*3B55(q)
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and
cng +cn Ci2 Cl4
Bii(q) = —Co6 ces(q —1) cseq |,
—Cs6 C56(q - 1) Cssq
cng +cn —C12 —C14
Bx(q) = C66 ces(g—1) cseq |,
Cs6 056(61 - 1) Cssq

B33(q) = Bii(qg—1), Bu(g) = Bxn(q—1), (2.54)

Bss(q) = Bi(q — 2),
0 cuy ci3
By=|css O 01,
css 0 0
B»; = Biy, Bis = Ba.
In addition to imposing traction-free boundary conditions on the surface » = a of the cylinder we also

need to specify certain rigid-body displacements and rotations corresponding to the solutions 1, 4, 7 and 10.
For the time being we shall suppose

X,=0, Xx=0, X;=0, X=0, (2.55)

which gives a displacement of zero at the origin and a rotation of zero about the x and y axes at the origin.
Particular solutions of the system of equations (2.51) and (2.55) corresponding to simple bending, flexure
and fourth-order bending are examined in the next sections.

2.3. Resultant forces and moments

The resultant forces and moments acting on the cross-section ‘z” of the cylinder may be found for each
eigenfunction solution with eigenvalue ¢; and eigenvector E;. Using the definitions

a p2n
X = // (0,.cos 0 — gy, sin 0)rdrdo,
0Jo

a p2n
Y:// (0,.sin 0 + . cos 0)rdrdo,
0Jo

a p2n
Z:// o..rdrdf,
0Jo
a r2n
MX:// 0,17 sin 0drde,
0Jo
a p2n
My:—// 0..r% cos 0drdo,
0.Jo

a p2n
M; = // o> drdo,
0J0

we find Z = 0 and M; = 0, so that these solutions correspond to a zero resultant longitudinal force and a
zero torsional moment on each cross-section. As we remarked earlier, the axial extension and torsion so-

(2.56)
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lution separates from the bending solutions. The eigenfunction solution with eigenvalue e; and eigenvector
E; generates the following resultant forces and moments:

X = 0, 81(e), §5,0,00E, + 2 (0,0,0,81(c; — 1), S3)E
€i+1 1€ 3 z e 1 33 )
ei+1 e ei—1
Y = ”“+ 1 (S(€,),0,0,84,0)E; +z72-(0,0,8:(e; — 1),0,0)E, + ~ zz(”“ 3 (0,0,0,0,S>(ce; — 2))E;,
e; €; —
7'L'Lle’+2 7.[ae,ntl
= 5 (0.85(6), 87,0, 0)E +277(0,0,0,55(e; — 1), 5))E,
My =~ (§4(e),0,0. 57, 0)E, MEIH(OOS( 10,0, — - 2™ (0.0.0,0, S¢(e: — 2))E,,
Yy — ei+2 6l€ Ty Z@,‘"—l , U, 061 €5 y Uy i 22 e 6\€i

(2.57)

where

S1(q) = (es6 — (c1ag + ¢24),c56(q — 1) 4 €2, €55 + Caa),

SZ(Q) = (Cl4q + €24 — Cs6, Css(q - 1) + C24,C55q + C44),

S3 = (0557 —Cu4, —034)7

Sy = (cs5,Caa,C3), (2.58)
S5(q) = (c139 + ca3, —€23, —C34),

Ss(q) = (c13q + 23, €23, ¢34),

87 = (0,c34,¢33).

Solutions corresponding to the zero eigenvalue, namely 1, 4, 7 and 10, are rigid-body displacements with
zero resultant forces and moments.

The additional resultant force and moment terms due to the simple bending (C), flexure (D) and fourth-
order bending terms (F) in the original displacement field (2.5) are

3

XZO, Y = —TCC‘34a—

1
3 (C—FDZ—&—EEzz), Z=0,

) (2.59)

MXZO, My:TCCB%
The particular solutions (2.14), (2.16), (2.18) and (2.23) also contribute to the resultant forces and
moments through the formulae (2.57) by using the extended eigenvector representation (2.50).
The following sections examine the simple bending, flexure and the effect of a uniform transverse load on
a cable.

1
(C'—&—Dz—|—5E22>7 M, =0.

3. Simple bending of a cylinder

In this section we examine the case of a helically reinforced cylinder or cable (0 <z < z;) which is bent
into a parabolic shape by forces and moments applied to its ends whilst the surface » = a of the cylinder
remains traction free. We suppose the axis of the cylinder is bent into a parabolic shape with curvature C
and the constants D, E and W, in (2.6) are taken to be zero. Assuming the zero rigid-body displacement
conditions (2.55) hold at the origin (0,0, 0), the zero traction conditions on the surface of the cylinder
reduce to Egs. (2.51), in which D = 0, £ = 0 and W, = 0. In this case, since only the first three components
of Z are non-zero, the term B(2)Z. on the right-hand side of (2.51) only has non-zero values in its first



788 J.A. Crossley et al. | International Journal of Solids and Structures 40 (2003) 777-806

three components. If we examine the left-hand side of (2.51) this indicates we should be able to solve the
system by selecting those eigenvectors with components 4 to 15 equal to zero.
Only the first three eigenvectors have this form, hence we can reduce the system to

Xoa® "By (g)(1, VzT(qz))T + X;a% ' By (g3) (1, VZT(%))T = —CaB(2)Z. + ¢13a(C,0,0)", (3.1)

remembering we have set X; = 0 and that ¢, and ¢; are the two positive eigenvalues of M(q).
This may be shown to be a linearly dependent set of three equations in two variables. If we observe that

M (q) = qBu(q) — Lu(q), (3.2)
by using (2.54) and the Appendix B, then

Cioq +Cxn +Ce6  —Ce6q + C22 + Ce6  —Cs69 + Cos
Li(q)= | cug+cn+cew —Ceq+cn+cee —Cseq+ Co (3.3)
C14q + Co4 Co4 Ca4

and the first two rows of this matrix are identical. If we substitute for By;(g) in (3.1) and use the fact that the
vectors (1,77 (g;))" are eigenvectors of M, (g;), we see that the left-hand side of (3.1) reduces to
1 1
Xpa®! q—Lll(qZ)(la ' (g2)" + Xsa®! q—Ln(fh)(L V) (g3))"
2 3

and the first two rows of this expression are identical.
Similarly, if we put 2B,(2) = M1(2) + L,;(2) and observe that Z. = Mfll (2)Ryo from (2.15), the right-
hand side of (3.1) reduces to

%Ca(cl;, Cr3, 6’34)T — %CaL“(Z)Mfll (2)R10 (34)

and the first two components are identical.
Hence the multipliers X; and X; satisfy the second and third equations of

ad2~! T T a?3~! T T
X5 ; Li(g2)(1,75(q2)) + X3 pa Lii(gq3)(1,7; (g3))
1 1 _
= 5 Ca(6‘23, Cr3, C34)T — ECCILH (Z)MUI (Z)Rlo, (35)
where
Riy = (2c13 — 23, —C23, —034)T (3.6)

and (1, (¢;))" are the eigenvectors of M, (¢;) (i = 2,3) and satisfy (2.34).
For simple bending, the resultant forces are given by (2.57) as

na®t! na®t! na’® a’
ﬁsz i S>(g:) 2 + C5$:(2)Ze, — Cresi 5 (3.7)
But S,(g) is equal to the third row of (¢ + 1)B)(¢) — M,(¢g) and, when this is substituted into (3.6) and we
use (3.1), the value of Y reduces to —(1/3)Cna’ [M§31)(2)Z ¢ + ¢34] which is easily shown to be zero. Here
M ﬁ) is the third row of M,;. Hence the simple bending deformation is maintained by the application of
zero resultant forces X =0, ¥ = 0 to the end-face of the cylinder and the constant moment (from (2.57))
given by the following:

X=0, Y=X (92) 2 + X,

nat a*
SG(qS)Z(13) — C756(2)ch + Cﬂsz33. (38)

na‘“” naq3+z

z¥ - x
S6(q2) 1 3q3 +2
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Hence application of a bending moment to the end-face of this anisotropic cylinder causes it to bend into a
parabolic curve in the plane orthogonal to the bending moment.

In the special case of a helically reinforced cable, Jolicoeur and Cardou (1994) have given two sets of
strain compliances. When the strain compliances of their material 1 (which corresponds to a 15° winding
angle) are inverted to produce stiffnesses they yield the symmetric matrix

9.922 1.148 4.354 —0.925 0 0
9.199 7.315 —-0.899 0 0
I 48.32 —10.394 0 0
-c=1 . s240 0 0 | (39)
0 0 0 0 2.134  0.4999
0 0 0 0 . 3.866
measured in N/m?.
The corresponding eigenvalues are
¢ =0, ¢q»=1.50547, g5 =2.10654. (3.10)
The eigenvectors Z\” and Z\” and the particular solution Z are
z% = (1,2.217,10.826)", Z = (1,12.369, —6.464)", Z. = (0.8198,6.712, —1.1499)".
The scaling factors a”~'X, and a%~'X; which satisfy (3.1) are
a7\ X, = —0.2449, a®"'X; = —0.462a (3.11)

and hence the deformation field in the cylinder is
u, = C[0.8198° + 1% — 0.24494%(r/a)” — 0.4621a°(r/a)*] cos 0,
ug = C[6.7121% — 122 — 0.54314°(r/a)” — 5.716a*(r/a)*]sin 0, (3.12)
u, = C[—1.149% — 2.652a*(r/a)™ + 2.987a*(r/a)*] sin 0 — Czrcos 0.

The axis of the cylinder has been bent into a parabolic curve with curvature C in the (x, z)-plane. This is
maintained by the constant bending moment

My = 23.154 x 10°a*C Nm, (3.13)

where it should be noted that C has the dimension of L' and lengths should be measured in metres for
consistency with the elastic constants. This result yields a bending stiffness of 889 N m? for a solid cable of
14 mm radius which compares well with Jolicoeur and Cardou’s result of 707 N m? for a hollow composite
cable 2 <7< 14 mm with the same external radius.

The solution for bending in the (y,z)-plane under the bending moment My can be obtained by replacing
6 by 6 + n/2 in the above solutions. Note that this yields a negative value for My.

4. Flexure of a cylinder

In this section we consider the case of a helically reinforced cylinder which is bent into a cubic shape of
the form u, = (1/6)Dz* in the (x,z)-plane by the action of forces and moments applied to its ends. We
assume the surface of the cylinder is traction-free and that the zero rigid-body displacement conditions
(2.55) hold at the origin. In this case we are looking for a solution of the boundary conditions (2.51) in
which C =0, E = 0 and W, = 0. We shall find that this is only possible if, in addition to a resultant shear
force ¥ and moment My, a constant moment My is applied to the end-face of the cylinder, indicating that
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the cylinder also wants to go into a state of simple bending in the (y, z)-plane. Thus the effect of the helical

winding manifests itself in this out-of-plane bending under flexure. The combined solution of flexure in the

(x,z)-plane and simple bending in the (y,z)-plane, the equivalent of the cantilever problem, is then found.
When C =0, £ =0, and W, = 0 then the right-hand side of (2.51) reduces to

—DB(3)Zp + ¢13a(0,0,D,0,0,0,0)",

where Zp is defined by (2.18).

Hence the right-hand side of (2.52) only has non-zero components in rows 4 to 9. Given the form of the
eigenvectors, we might expect the solution to depend only on the eigenvector solutions 4 to 9 and hence the
boundary conditions will reduce to

9
> X:B(e:)E; = —DB(3)Zp + c13a(0,0,D,0,0,0,0)". (4.1)
i=4

In addition, if we fix the rigid-body displacement X; and the rotation X7 to be zero at the origin, the system
reduces to the following six equations in four unknowns:

XsaquBzz(%)Z;S) +Xeaq371322((13)zg® + X [322(1 + (I2)Z§8) + Bx(1 + Q2)Zgg> a®™!

+Xo|Bn(1 4 q3)ZY) + Bys(1 + q3)z;9>} a® ' = —Da*(B»(3)Zps + Bx3(3)Zp3) (4.2)

Xgaq272B33(1 + Q2)Z(38) +Xgaq372333(1 —+ Q3)Z(39) = —aB33(3)ZD3 + C]::,ClD(l7 0, O)T (43)

But we have shown that Bs;(1 + ¢;) = By;(¢;) and Z§8> = Z(lz), Z(;;) = Z§3), Zps = Z 1, so that the system of
equations (4.3) is identical to (3.1) on replacing Xg by aX, and Xy by aX; and C by D. We have shown that
the three equations in (3.1) are linearly dependent and hence we find

Xg = DLLXVQ/C7 Xg = DaX3/C, (44)
where X, and X; are defined by (3.4).

The variables X5 and X; must then satisfy the three equations in (4.2). The first two terms on the left-
hand side of (4.2) are

Xsa” ' By (q2) Z5 + Xsa® ' By (q3) 25, (4.5)
but, as in (3.2),

Mx(q) = qBxn(q) — Lx(q), (4.6)
where

€129 + €2 + Ces Co6q — C22 — Cop Cs6q — C24
L»(q) = | —ciag —cn —ce6  —Co6q + o+ o6 —Cs6q + €4 4.7)
—C14q — C4 Co4 Ca4

and Z és) and Z (26) are eigenvectors of M»(q2), M1 (g;). Hence the X5 and X5 terms on the left-hand side of
(4.2) reduce to

q?2~1

-1
a‘]z
Xs

q>

Ly(g3)ZY, (4.8)
q3

L, (02)ng> + X

in which rows one and two are identical in form but opposite in sign. If these two equations are added
together, then X5 and Xg cancel from the equation and the remaining terms turn out to be identical to the
third equation of (4.3). Hence we need only solve the second and third equations of (4.2) for X5 and Xj.
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If we consider the case of a helically reinforced cable and use Jolicoeur and Cardou’s stiffnesses (see
(3.9)), the eigenvectors which occur in the flexure problem have the non-zero components

zY = (1,-22173,-10.827)", Z\% = (1,-12.369,6.464)",
ZW¥ = (-1.293,-22.574,29.227)", Z¥ = (1,2.2173,10.827)", (4.9)
ZY) = (1.462,9.388, —22.712)", ZY) = (1,12.369, —6.464)",

and the particular solution has

Zp, = (0.372,2.249, —6.173)",  Zp; = (0.820,6.712,—1.150)". (4.10)
The flexure solution gives rise to the following multipliers of the eigenvectors

X5 =0.01394%%,  Xg=0.291a""%,

4.11
Xy = —0.2454>", Xy = —0.462a> %, (4.11)

and generates a displacement field of the form

u, =D [123 10.81982% — 0.245a22(f)q2 - 0.462azz(f)‘“} cos 0
6 a a

4D {0.371&3 +0.01394° (2)‘“ +0.2914° (2)‘” +03160* (%) Y 0.67604° (5) H(“] sin 0,

(4.12)

with similar expressions for uy and u..

These deformations correspond to the centre-line of the cable having the shape u, = (1/6)Dz* in the
(x,z)-plane and are maintained by the following resultant forces and moments acting on the cross-section of
the cylinder

X = —23.154 x 10°Da®, ¥ =0,

4.13
My = —45.035 x 10°Da®, My = 23.154 x 10°Dza*, (413)

measured in Newtons and N m. The constant moment My has to be applied to prevent the rod bending in
the (y,z)-plane.

This solution may be combined with the simple bending solution (found in Section 3) to find the de-
formation of a cylinder which is built-in (in a Saint-Venant sense) at z = 0 and has a uniform resultant shear
force Xy and zero bending moments applied at the end z = z, of the cylinder. We achieve this by choosing D
to match the applied shear force X using (4.13),, allowing the cable to undergo simple bending in the (x, z)-
plane under the bending moment My = Xz, (applied to the end-face z = z;) which is equal and opposite to
that in (4.13)4 together with a simple bending in the (y,z)-plane under an equal and opposite bending
moment to M, in (4.13)3, in this case My = —1.945Xa.

The resultant forces and moments in the cylinder at the cross-section ‘z” reduce to

X=X, Y=0, Z=0,

(4.14)
My =0, My=Xy(z0—2), M;=0,
and the corresponding deformation of the axis (» = 0) of the cylinder in Cartesian co-ordinates is
u, = 0.007198 x 107°X,2*(3zy — z) /a®,
02 (3 - 2)/ wis)

u, = 0.0420 x 107°X,2%/a®, u. =0,

measured in metres, see Fig. 1. This graph gives the non-dimensional deflections 10~®c33au, /X,, displayed as
a continuous line, and 10“’c33auy /X, for a cylinder of length 100a. Hence, under flexure, the cylinder bends
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Fig. 1. Flexure of a cylindrical cantilever of length z, = 100a by a resultant force X,i applied to its end. The non-dimensional deflections
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(10~%acs3 /Xo)u, and (10~%acs; /X,)u, are plotted as functions of s = z/a.
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Fig. 2. Flexure of a cylindrical cantilever of length 100a by a resultant force Xpi applied to its end. The cos 0 components of the non-

(a) Orr,0r8,000

dimensional stress field on z = 0.

up in the (x,z)-plane and to the right in the (y,z)-plane. This cable has been manufactured with an anti-
clockwise helical winding of 15° relative to the axis of the cylinder. If the winding is made clockwise with an

angle of 15°, the bend in the (y,z)-plane is reversed.

(b) 022,072,002
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Fig. 3. Flexure of a cylindrical cantilever of length 100a by a resultant force Xyi applied to its end. The sin @ components of the stress
field on z = 0.

The stress field on the cross-section z = 0 for a cantilever of length 100« is shown on Figs. 2 and 3. Each
stress component has the form of f(r) cos 6 + g(r) sin 6 for 0 <r < a. Fig. 2 plots the cos # components of
the stress field, scaled by a*/(Xoz), as a function of r/a. Fig. 3 plots the sin 6 components of the stress field
scaled by a®/(Xyz), as a function of r/a.

The continuous lines denote ¢, and a... The dotted lines denoting ¢,y and a,. go to zero at » = a. The
dashed lines denote oy and oy,. This notation has been used on all figures involving the stress components.
We note that o, is the largest stress component and that a,,, 6y, 0.., 5. depend largely on cos 6, whilst o,,
and 0,9 depend largely on sin . The cable is principally bending by flexure in the (x, z)-plane which corres-
ponds to 6 = 0.

The flexure solution for the (y,z)-plane is easily found on replacing 0 by 0 + =/2.

5. Body force solutions

A particular solution was obtained in Section 2 corresponding to the case when a constant body force of
magnitude W, per unit volume acts in the x-direction. This produces a fourth-order deflection of the
centreline of the rod. The boundary conditions (2.51) become

IZSX,'B(ei)Ei +EB(4)Z: — Ry = —WB(2)Zy, (5.1)

i=1

in which we have taken C and D equal to zero. If we fix the displacement field and the rotations to be zero at
the origin, the problem reduces to satisfying the 15 equations in (5.1). We have 11 of the constants X; and
the constant E at our disposal.

As in the previous sections, this is a linearly dependent set of equations and a unique solution may be
found which corresponds to fourth-order bending in the (x,z)-plane. This deformation can only be
maintained by the application of the resultant forces X; and Yi¢, and resultant moments My s and My at
the end z = z, of the rod. In the case of the cable modelled using Jolicoeur and Cardou’s constants (3.9), the
multipliers X; and E are
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X, =0, X,=-00%a" X;=0057%, Xo=Xs=Xs=0, Xo=Xs=2Xo=0,

Xio=0, X;; =0.0019"%, X;,=0.0395"%, X;=0Xy4=-0.0332a"%,

X5 = —0.0627a %, E =0.1357/d’, (5.2)
where each term should be multiplied by 10, to put it into dimensional form and W, is measured in
N/m?. The resultants necessary to maintain this deformation in the (x, z)-plane have the following values on
z = Zzp.

Xor = —nad’zoWy, Yior = —6.110a° W,

1 5.3
Mbe = 76.110&320%, MYbf = (ETCGZZ(Z) — 273804> VV() ( )

5.1. The cantilever problem

The resultant forces and moments in (5.3) may be removed by combining this solution with bending and
flexural deformations in the (x,z) and (y,z) planes.
The combined solutions are of the form

U = Uy + Clusb + C2usb2 +Dlllﬂ + D2uﬂ2, (54)

where uyr is the body force field of the type (2.6) found by solving (5.1), uy, is the simple bending field and ug
the flexure field found in the previous sections. The fields ug,, and ug, are the corresponding bending and
flexure fields in the (y,z)-plane. In the cantilever problem we must choose the multiplying constants to
ensure the end z = z, of the cylinder is unloaded and the end z = 0 is built-in in a Saint-Venant sense. The
corresponding constants are

D1 = —Xye/Xy, D2 = Yor/Xn,

Cl = —(Myy + DIMyq — D2Myq) /by, (5.5)

C2 - —(M)(bf +D1MXﬂ + D2Myﬂ)/bs,
where Xj, My, Myq are the forces and moments which occur in Eq. (4.13) of the flexure problem and b is

the bending stiffness given in (3.13) of the bending problem.
The resultant forces and moments in the rod become

X =Wnd*(z0—z2), Y=0, Z=0, My=0, My=1Wnd*(z—2z), M,=0. (5.6)

Using Jolicoeur and Cardou’s constants (3.9), the displacement field on the axis of the cylinder is

Uy = 5.653 x 10_12%612(2)2((2)2 - 4(%0) n 6(%0)2 - 34.938),

zZ\2(3zg —z (57)
uy:43.983><1012Woa2<5)< 0 )

a

The non-dimensional deflections of a cylindrical cantilever of length zy = 100a under the body force Wi per
unit volume are shown on Fig. 4. The deflections are scaled by 10~°acs;/(na’zoW,) and are plotted as
functions of s = z/a.

The cos 0 components of the non-dimensional stress field on the cross-section z = 0 are given on Fig. 5
and the corresponding sin 0 components on Fig. 6. Again the stress components have been scaled by
@’/ (na*zoW,) where the denominator is the total ‘weight’ of the cylinder. Note that the largest stress is the
cos 8 component of .. on Fig. 5 and the principal bending direction is in the 6 = 0 plane.
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Fig. 4. Deflection of a cylindrical cantilever of length zy =100a by a body force W,. The non-dimensional deflections
(10-%acs3 / (na*zoWp) ) (uy, u,) are plotted as functions of s = z/a.
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Fig. 5. Deflection of a cylindrical cantilever of length zy = 100a by a body force W,. The cos components of the non-dimensional
stress field on z = 0 are plotted as a function of R = r/a.

5.2. The catenary problem

In a similar manner we can examine the transverse deflections of a cable supported at both ends. The full
catenary problem, of course, involves a combination of a finite deflection of the cable, and the extensional
behaviour modelled by Blouin and Cardou (1989). The Saint-Venant type solutions for the linear elastic



796 J.A. Crossley et al. | International Journal of Solids and Structures 40 (2003) 777-806

/,"" “\\‘
’/,‘ \\ o ~. ""
0.4 ~ 1T ;
7 —1 &
0.2 -27i
/
T ~ -3
o' a2~ " g4 ——0® 08 1
—=7
/ R —4
—o0.2- _s .
v (a') Orr,0r8,000 S (b) O22,07r2,00z2

Fig. 6. Deflection of a cylindrical cantilever of length zy = 100a by a body force ;. The sin 0 components of the non-dimensional stress
field on z = 0 are plotted as a function of R = r/a.

small transverse deflections under self-weight of the cable are all that will be modelled here. To find the
solution for a cable which is simply supported at both ends we must permit rotations to take place at each
end so that the displacement field # has the representation

u = wy; + Ciug, + Coutgyy + Dyug + Dougy + Riug + Rouyg, (5.8)

where u; and uy are the displacement fields given in Section 2.1 corresponding to the eigenvector solutions
7 and 10, which correspond to rotations at the origin and u, gy, etc. are the displacement fields defined in
Eq. (5.4). We select these coefficients so that one of the following two sets of boundary conditions is satis-
fiedatz=0and z = z,

(@) u,=0, u,=0, u,.,=0 My=0,

5.9
b) u,=0, u,=0, My=0, My=0. (59)

In case (a) the cable is permitted to rotate at its ends in the (x, z)-plane only, as if it were held in a small
pulley, and in case (b) the ends are simply supported and free to rotate about the x and y axes.
Case (a): The solution subject to the boundary conditions

u,=0, u,=0, u,.=0 My=0, (5.10)

at the ends z = 0, z = z yields a displacement which lies entirely in the (x, z)-plane (1, = 0) and is supported
by the forces and moments

X :gWoaz(zo —22), Y =—6110Wd, My=3.0550Wd (z0 — 2z), My = —gWOaZZ(ZO —2).
(5.11)

Hence the deformation is possible if equal and opposite reaction forces F6.110W,a’ acting in the y-direction
and reaction moments My = £3.055W,a’z, are applied at the supports at z = 0 and z = z,, in addition to the
reactions (—n/2)Wya’z, acting in the x-direction which support the load.

The scaled displacement field is shown on Fig. 7.

Case (b): The cable is subject to the (simply-supported) boundary conditions

llx:(), l/ly:(), MX:O, A4y:07
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Fig. 7. Deflection of a catenary with case (a) boundary conditions. The scaled displacement (10~%acs;/(na’zoW;))u, is plotted as a
function of s = z/a.

at the ends z = 0 and z = z;. In this case the cable develops an out-of-plane bend with simple bending and
flexure occurring in both the (x,z) and (y,z) planes. The scaled displacement field is shown on Fig. 8. The
load is supported at the ends by resultant forces in the (x,z)-plane. The corresponding cos6 and sin 8
components of the stress field at z = 0 are shown on Figs. 9 and 10.

6. Composite cylinders

Jolicoeur and Cardou (1994) have considered the simple bending of a composite hollow cable. The inner
cylindrical shell consists of a uniform transversely isotropic material which is helically wound about the
cylinder axis with a helical angle of 15°. The material constants for this material have been used in the
earlier sections of this paper. A second cylindrical shell, consisting of another uniform transversely isotropic
material, is helically wound about the first with a helical angle of —25°, so the system is contrawound. The
cases where the layers are either bonded together or make a frictionless contact are considered. Jolicoeur
and Cardou solve the problem by using a Lekhnitskii stress function approach, and find the bending
stiffness and the stress fields for simple bending of this composite cylinder. The approach described in this
paper has been used by Crossley (2002) to tackle such bending and flexure problems. The eigenvectors
described in Section 2, which correspond to the positive and zero eigenvalues of the matrix M(g) in (2.8),
must be supplemented by the eigenvectors corresponding to the negative eigenvalues ¢4 and ¢s from (2.13).
These generate stress and displacement fields which are singular on the axis » = 0 of the cylinder, but
provide sufficient generality to enable the boundary conditions on the inside of a hollow cylinder or the
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Fig. 8. Deflection of a catenary with case (b) boundary conditions. The scaled displacement components (10-%acs3/(na*Wozo)) (uy, u,)
are plotted as functions of s = z/a.
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Fig. 9. Deflection of a catenary of length zy = 100a by a body force W,. The cos § components of the non-dimensional stress field on
z =0 are plotted as a function of R =r/a.

contact conditions between the cylindrical layers to be satisfied. Details are omitted here but may be found
in Crossley (2002).

As a test of the analysis presented in this paper, the problem considered by Jolicoeur and Cardou (1994)
was solved. They apply the bending moment My = 10 N'm to the composite cable which causes its axis to
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Fig. 10. Deflection of a catenary of length zy = 100a by a body force ;. The sin § components of the non-dimensional stress field on
z =0 are plotted as a function of R = r/a.

deform into the shape u, = —(1/2)Cz* in the (y,z)-plane. The internal and external cylindrical surfaces are
assumed to be traction-free and the interface either bonded or making a frictionless contact. The results we
have obtained are displayed on Fig. 11 which corresponds to the results presented by Jolicoeur and Cardou.
The bending stiffness of 707.73245 N'm? for the bonded case and 498.47619 N'm? for the frictionless case
agree with the results of Jolicoeur and Cardou to three decimal places, so that the curvature C has the value
10/707.73 m~! in the bonded case and 10/498.48 m~! in the frictionless case.

The graphical results of Fig. 11 are almost in exact agreement with those of Jolicoeur and Cardou, except
that we should note that we have used metres and N/m? as units for consistency with the rest of this paper.
The solid lines correspond to the bonded case and the dotted lines to the frictionless case. Note that the
behaviour is quite different in the two cases. When there is bonding between the layers only the stress
components agy, g4, and o, are discontinuous across the interface and the normal stress g, is compressive
on 0 = n/2 and tensile on 6§ = —x/2. In the case of frictionless conditions the tangential displacement u,
and, in particular, the axial displacement u, have sharp discontinuities across the interface. The largest
discontinuity is in the axial displacement and it has its maximum value on the neutral (y = 0) plane. The
radial stress o, drops to zero at the interface (this may be proved analytically) and the stress components
0.., g and gy, have discontinuities across the interface. This raises the possibility that differential slip, both
axially and tangentially, may be more likely to occur under frictionless conditions. Also, from a practical
point of view, since the frictionless and bonded solutions are so different, good predictions of the state of
stress in a composite cable can only be made when the interface conditions are known and modelled ac-
curately.

Further investigations of composite cables under simple bending, flexure and more general loading
conditions have been examined by Crossley (2002).

7. One-dimensional model

The behaviour of this helically wound cable may be modelled using a one-dimensional theory relating
the bending of the axis of the cylinder with the shear forces and bending moments at each cross-section. For
an initially straight cable with the applied transverse loads Fy(z)i + Fy(z)j per unit length, the equilibrium
equations are
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Fig. 11. Graphs of displacements in the simple bending case for a two layered hollow cable with constants from Jolicoeur and Cardou
(1994), for both bonded and frictionless conditions: (a) graph of f(r), where u, = () sin 0 — (1/2)Cz*sin 0, (b) graph of g(r), where
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a;;(r) as stated against radial distance, r, in the simple bending case.
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X'(z) = =Fx(2), Y'(2) = —Fy(2),
My(z) =Y(z), My(z) = —X(2). (7.1)

The constitutive relations for a helically wound cylinder of this type relate the curvature to the bending
moments and shear forces and have the form

byt = My(z) — a¥ (2), (7.2)

bsuy o = —My(z) + aX(z), (7.3)
where b is the bending stiffness of the cable and « is a constant for the cable. In vector form this becomes
bD..=—k x (M —uaS), (7.4)

where D is the transverse displacement of the axis of the cable, M the bending moment and S the shear
force in the cable. This model may be used to give a physical interpretation to some of the constants oc-
curring in the previous sections of the work which were generated directly from some Maple manipulations.

7.1. Simple bending

The solution obtained in Section 3 with a constant value MY for My(z) and X =0, Y = 0, My = 0, yields
Uyzz = Mg/bﬂy Uy, = 07

giving a constant curvature in the (x,z)-plane. The bending stiffness for Jolicoeur and Cardou’s constants
(3.9) has the value of bs given in (3.13) as

by = 23.154a* x 10° Nm>. (7.5)

7.2. Flexure

The solutions obtained in Section 4 first found the resultant forces and moments necessary to maintain
the displacement field u, = (1/6)Dz* and u, =0. The resultant forces (4.13) are X = —hD, Y =0,
My = —45.0354°D x 10°, My = Dbgz. If these are substituted into the constitutive relations (7.2) and (7.3),
the curvature relation (7.2) is satisfied exactly and (7.3) reduces to

0=—My+oX.
Hence, using Jolicoeur and Cardou’s constants (3.9), the material constant o has the value
o = 1.9454. (7.6)

The second solution obtained in Section 4 corresponds to the cantilever problem with an end load Xj.
The shear force and bending moments are given by (4.14) and the only non-zero terms are X = X,
My = Xy(zp — z). The corresponding curvatures are

bsux"zz = X()(Z() — Z), bsuyﬂ = O(X(). (77)
If these are integrated subject to the built-in boundary conditions
u(0) =0, u,.(0)=0, u,(0)=0, u,.(0)=0, (7.8)

the displacements (4.15) are found and the numerical multipliers 7.198 x 10~'2 and 4.20 x 10~!"' can be
identified as (6b,)"" and o/ (2bs).
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7.3. Body force solutions

The first solution corresponds to the deformation u, = Ez*/24, u, = 0. This was maintained by the re-
sultant force and moment field (5.3), namely

X = —na’Wyz, Y =-6110aW,, My=—6.110a’zW,, My =ina’zZ*W, —2.738a*W;,. (7.9)

If the expression for My is scaled in terms of the overall length z, of the cable it becomes

2 2
My:%nazWozé<<Z£0> —1.447<;10) ) (7.10)

The quantity zy/a is the scaled natural length of the cylinder which must be large for this Saint-Venant
theory to be relevant. The second term in (7.10) is small compared with the first term except near to the
built-in end of the cable where we might expect these solutions to be least accurate. So, for the purpose of
constructing a one-dimensional theory, we shall suppose that this term could be adjusted by a quantity
proportional to (a/z)*. We postulate

2 2
-t (2) ()

where k is a constant to replace the last term in (7.9). This is equivalent to supposing that the boundary
conditions which hold on the end face z = 0 of the cable whose centre line satisfies the constitutive relations
(7.2) and (7.3) differ by a term of order (a/z,)” from those which are applied over the end face z = 0 of the
cable in Section 5.

Using (7.2) and (7.3), these relations reduce to

IbEZ = na® 2 Wy — inka* Wy + 06.110a° W (7.12)
and

0 = 6.110a’ Wyz + a(—na*Wyz), (7.13)
so that, from (7.13), the numerical value of 6.110 is seen to be

6.110 = an/a. (7.14)
Eq. (7.12) now implies

E = na*W, /b, k:6.110a%:7.56, (7.15)

after some manipulation. The value of E found in (5.2) has precisely the value given in (7.15).

The second solution of Section 5 corresponds to the cantilever problem with the force field Fy(z) equal to
na’>W, and the end-face unstressed. The resultant forces and moments are given in (5.5) with the non-zero
terms

X = na*Wy(z — z), My :%naZWO(zfzo)z. (7.16)
The constitutive relations define the curvatures

bsity .. = %nazWo(z — 20)27 bau, .. = ama*Wy(z — z). (7.17)

On integrating these equations subject to the built-in conditions (7.8) at z = 0 we find
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24
b, = (a/6)na*Woz* (3z — z).

by, = ( | )ﬂa Woz* (25 — 4zz9 + 62;), (7.18)

The numerical coefficients in (5.7) can now be identified and confirmed, but it should be noted that the
final term in (5.7); has the order of (a/zo)2 compared with the other terms in the expression and can be
neglected except near the built-in end of the cable. Again, this term must be due to the fine structure of the
boundary conditions on the end-face z =0 of the cylinder which has been induced by our solution in
Section 5.

7.4. Catenary problems

We need to solve the system of equations

X'(z) = —na*Wy, Y'(z) =

My(2) = Y(2), My(z) = ( );
bt .. = My(z) — aY(z),
bsuy .. = —My(z) 4+ aX (z),

(7.19)

subject to boundary conditions of the form of (5.9) (a) or (b).
In case (a), with the boundary conditions u, = 0, u, = 0, u,. = 0, My = 0 at z = 0 and z = z,, integration
of the system yields

X(z) = —nd®Wy(z — 20/2), Y(z) = —ana® W,

) 5 (7.20)
My (z) = —ama™Wy(z — z0/2), My(z) = ma" Woz(z — z0) /2,
which agree with Eq. (5.11), and
2
bot, = MMW‘) (& —22%20 + 220+ 1202(22 — zz0)), by, =0, (7.21)

and we note that u, is symmetrical about the midpoint z = z,/2.
Similarly, in case (b) with the boundary conditions u, =0, u, = 0, My =0, My =0 at z = 0 and z = z,
integration of the system yields

X(z) = —nad®Wy(z — 20/2), Y(z) =0,

7.22
My(z) =0, My(z) = nd®*Wy(2* — z92) /2, ( )
with the displacement fields
na’Wy 4 3 3
bsu, = 7 (2" — 2220 + zz),
) (7.23)
W
bsu, = — nalz 0 (228 — 3202% + Z32),

and we note that u, is symmetrical and u, is antisymmetrical about the midpoint z = z,/2 of the cable.
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8. Discussion

The analysis presented in this paper has found exact solutions, in a Saint-Venant sense, for the bending
of a helically reinforced cylinder when the transverse displacement field is a polynomial of degree four in the
axial co-ordinate z. This work may be generalised in more than one direction.

The extension of the analysis to cables with two or three layers of different helically wound materials has
been carried out by Crossley (2002) and is briefly reported in Section 6. In this work the cases where the
layers are bonded together or make a frictionless contact are both considered. The analysis could also be
extended to more layers but it is subject to an increasing algebraic complexity.

A second generalisation is to suppose the transverse displacement field is a polynomial of degree » in z.
Clearly we can extend the analysis presented here by maintaining the same pattern for the highest-order
coefficients in the field as that which is used in (2.6). These terms give rise to a strain field in which the only
non-zero component is e., and this has degree n — 2 in z. If the other expressions in (2.6) are also extended
by using homogeneous terms of the form z4~', z22p972 ... 2"~24*27" the equilibrium equations may be
formed. These will reduce to a matrix system of the structure of (2.8) with M (g) having a partitioned form,
as in (2.11), but with a larger system of linear equations. For example, for a sixth-degree polynomial, the
homogeneous expressions must include all powers of z up to terms of the form z*79~* and the system of
equations is of order 27 x 27. The form for M(q) has 3 x 3 matrices along the leading diagonal from
M (gq) to My (g), with a sparse array of matrices above the leading diagonal. These matrices will be related
by expressions of the form given in (2.12) and the particular solutions and the eigenvectors can be generated
as in Section 2. The boundary values of o,., 0,9, 6. on the cylindrical surface » = a will also reduce to
polynomials in z multiplying cos 6 or sinf. Assuming the imposed surface tractions have this form, or
appropriate body-force terms have been inserted into the equilibrium equations, higher-order bending
solutions for the cylinder may be found. A similar approach is possible to find solutions which depend on
cos(n0) and sin(n0).

Recently Martin and Berger (2002) have considered the propagation of mechanical waves along ACSR
(aluminium conductor steel reinforced) power lines and given references to previous work on the vibrations
of wire ropes. In general one-dimensional models are used to form the equations of motion. As we have
found no coupling between the bending solutions described in this paper and the extension—torsion solu-
tions found by Blouin and Cardou (1989), we might expect uncoupled wave phenomena to occur. The one-
dimensional constitutive equation (7.4) yields a simple model for the bending of these anisotropic cylinders
at points remote from their points of support. It is easily shown, on replacing Eq. (7.1) by the appropriate
equations of motion, that two helical bending waves can propagate along such anisotropic cylinders. The
wave speeds are w/p; and w/p,, where p; and p, are the positive roots of the equation

= (mw2>(licxp), (8.1)

by

where o is the frequency, m is the mass per unit length of the cable, b, is the bending stiffness and o the
anisotropic cable constant. Further investigation of dynamic phenomena for helically reinforced cables can
be based on this one-dimensional model or the full three-dimensional system.
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Appendix A. The stress—strain relations

The elastic constants A, a, f§, which occur in the constitutive equation (2.1), namely
gij = )hekkélj + 2,[1—1-61‘_]‘ + oc(akagekéé,-j + a,-a,»ekk) + Z(ML — ,Lt) (aiakekj + ajakekj) + ﬁa,»a_,«akagekl, (Al)

may be expressed directly in terms of the extension moduli £ and Er for uniaxial tension along and
orthogonal to the direction a, the Poisson’s ratios vi. and vt associated with these extensions and y; and p
which are the shear moduli along and orthogonal to the direction a. Using the notation of Blouin and
Cardou (1989), these reduce to

pr = Ex/[2(1 + vr)],

- (A.2)
y
o :ET |:VL(1 +vr — VL) L T:|/(1 + VT)%
EL
B=Er(l—vr)/y—4pu, +2up — 200 — 4,
where
V= (1 — VT)ET/EL — 2V2L (A3)

Note that a uniaxial stress in the 7-direction (orthogonal to a) generates a strain with Poisson’s ratio vy in
the L-direction, and a strain with Poisson’s ratio vr in an orthogonal 7-direction. In addition, v| strain in
the 7-direction due to a uniaxial stress in the L-direction and that these are connected by the relation

ETVL = ELVL. (A4)

Note also that there are only five independent elastic constants.
When the constitutive equation is put into cylindrical polar co-ordinates (, 0, z) and the principal di-
rection of transverse isotropy is taken along the helical direction

a=eysind + e, coso, (A.5)
where 0 is the lay angle of the helical strands, the elastic stiffness matrix defined in (2.3) has the form

en =2+ 2up, cp=A+asin’s, 3= A+ 0cos’d, ¢4 = asindcosd,

2 = A+ 2puy 0820 + (4py + 20+ fsin® §)sin® 8, ca3 = A+ o+ fsin’ 5 cos’ I,

Cag = (o + 20y — 2up + fsin® 8) sin § cos &,

33 = A — 2y 0820 + (dy + 200+ P cos® §) cos® d,

c3q = (004 2 — 2pr + fcos? 8)sin 5 cosd, caq = py + fsin’ dcos? d,

Css = fipSin’ & 4 g1 08>8, csq = (ft; — piy) cOsdsind, ce6 = piy cOS> d + iy sin® d.

Appendix B. The submatrices of M(q)

In Eq. (2.11) the 15 x 15 matrix M(q) is partitioned into a set of 3 x 3 submatrices which are detailed
below. The matrices are closely related to each other.
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cng® — cn — ces (c12+ce6)qg — cn — 6 (Cra + Cs6)q — Ca
Mii(q) = | —(c12+ cos)qg — €22 — Cos Co6q” — €22 — Co6 cso(q® +q) — e |,
—(c1a+cs6)g — C cso(q® —q) — ¢ Cssq” — Caa
cng® — cn — ces —(ci2+ce6)g + ¢+ ces  —(ca +¢s6)g + C
M (q) = | (c12+ ce6)q + 20 + ces Co6q” — €22 — Cos css(¢*+q) —cu |
(c14 +cs6)q + 24 ese(q> —q) — e Cssq” — Caa

Msy(q) = Mii(g— 1), Mu(g) =Mn(q—1), Mss(q)=Mu(q-2),

2cs6 (c1a +¢s6)g — e — 2¢56 (134 ¢55)q — €23 — C55
M 4(q) = | (cia+cs6)q + coa+ cs6 — Cia —2cy4 —Ca4 — €23 )
(c13+¢s5)qg — ci13 + 3 —C23 — Ca4 —2c34
Css 0 0
Mls(q) = 0 ca c3 ],

0 ¢ c33

—2cs6 (c1a+¢s6)q — cas —2¢s6 (13 + €s5)g — €23 — Cs5
M>(q) = | (c1a+ cs6)q + caa + 56 — C1a 24 €23+ Cay )
(c13+css)g —ci3+ca3 €23 + Ca4 2¢34

Mys(q) = My(q—1).
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